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Abstract

We study Sample Average Approximation (SAA) for risk-averse stochastic pro-
grams, where the risk of an uncertain goal function is measured by a law-invariant
convex risk measure. We provide a non-asymptotic upper estimation of the proba-
bility of the absolute deviation error between the SAA and the true optimal value,
under more general assumptions for the goal function and risk measure as com-
pared to previous works by [2] and [27]. In particular, the estimation is based on
conditions from empirical process theory, which allow the goal function to be non-
linear, unbounded, and do not require any pathwise analytical properties such as
continuity or convexity. Conditions on the risk measures are also readily verifiable
in the coherent case, with prominent examples including distortion risk measures
and expectiles. Furthermore, our non-asymptotic bound contains explicit con-
stants that can be used to construct confidence regions for the true optimal value
and can also be adapted to provide estimates for stochastic programs with inverse
S-shaped distortion risk measures.

Keywords: Risk-averse stochastic program, Sample average approximation,
Law-invariant risk measures

1. Introduction

Many decision problems in finance, microeconomics and operations research suppose that
the decision maker has a preference that is represented by a real-valued risk measure
ρ, in the sense that a random loss X is preferred to Y , if and only if ρ(X) ≤ ρ(Y ).
An optimal decision can therefore be formulated as a solution of the following risk
minimization problem:

inf
θ∈Θ

ρ
(
G(θ, Z)

)
, (1.1)

where Θ ⊂ Rm is a compact space of decisions, Z is a d-dimensional random vector
with distribution PZ , and G(θ, Z) is a goal function. Depending on the choice of ρ,Θ
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and G, problem (1.1) encompasses a wide range of decision problems, including portfolio
optimization, inventory management, as well as learning problems such as (generalized)
least squares regressions.
A simple example of ρ is the expected value, in which case the decision maker is

assumed to be risk neutral. This assumption is, however, too idealistic, and one is often
more inclined to work with a ρ that accounts for risk aversion. Besides expected value,
other popular choices of ρ can be the expected utility evaluation, optimized certainty
equivalent, or distortion risk measures. Therefore, we assume that ρ is a member of the
class of law-invariant, convex risk measures, which includes all aforementioned examples
and more (see e.g., [18, 19]).
In general, the parameterized distribution of the goal function G is unknown, and the

only available information must be inferred from an i.i.d. sample, formally expressed by
a sequence (Zj)j∈N of independent d-dimensional random vectors on a probability space
(Ω,F ,P) that are identically distributed as the d-dimensional random vector Z. By law-
invariance, we may associate ρ with a functional Rρ on sets of distribution functions. In
this case, (1.1) reads as follows:

inf
θ∈Θ

Rρ(Fθ),

where Fθ is the distribution function of G(θ, Z). Based on the i.i.d. sample (Z1, · · · , Zn),

we may replace any distribution function Fθ with its empirical counterpart F̂n,θ, defined
by

F̂n,θ(t) :=
1

n

n∑
j=1

1(−∞,t]

(
G(θ, Zj)

)
.

Then the original optimization problem (1.1) may be approximated by the following
one, which is generally known as the Sample Average Approximation (SAA):

inf
θ∈Θ

Rρ(F̂n,θ) (n ∈ N). (1.2)

An interesting and highly relevant question is the following: How good is the SAA
approximation? Since (1.2) depends on each realization of the i.i.d. samples, one way to
answer this question is to examine the following deviation probability:

P
({∣∣ inf

θ∈Θ
Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣ ≥ ϵ
})

(n ∈ N, ϵ > 0). (1.3)

The deviation probability provides a means to quantify the approximation error of
SAA by measuring the likelihood that the true optimal value infθ∈ΘRρ

(
Fθ

)
lies within

the interval infθ∈ΘRρ

(
F̂n,θ) ± ϵ. It is therefore crucial to have an upper estimation on

(1.3) that depends explicitly on the sample size n (which we refer to as a non-asymptotic
upper bound), since this would shed light on the sample size n that is required to achieve

a given confidence level β > 0 for the interval infθ∈ΘRρ

(
F̂n,θ) ± ϵ. Moreover, an upper

estimation that holds uniformly over all distributions is useful as it is robust against
model uncertainty. A simple way to obtain an upper bound on the deviation probability
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is through the Markov’s inequality, which estimates (1.3) by its expected deviation:

P
({∣∣ inf

θ∈Θ
Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣ ≥ ϵ
})

≤ E
∣∣∣ inf
θ∈Θ

Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣∣/ϵ.
Then, the expected deviation can be further estimated using upper bounds that are
obtained, for example, in [2]. However, the best possible convergence rate that can be
achieved for expected deviation is known to be 1/

√
n, since the expected value itself

is a law-invariant risk measure. Therefore, an estimation of (1.3) based on Markov’s
inequality and expected deviation can be too conservative for practical purposes, as it
implies that the sample size n must be at the order of 1/(βϵ)2 to achieve a confidence
level β for the deviation probability, which can be very large even for modestly small ϵ
and β.
In the risk neutral case, where ρ is the expected value, it is widely known that tighter

estimation than Markov’s inequality on the deviation probability can be obtained. For
example, the classical Hoeffding’s inequality [23] asserts that for any distributions with
bounded support, one has

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X]

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−nϵ2/B2

)
, (1.4)

where B > 0 is such that |X| ≤ B almost-surely. The bound in (1.4) is more efficient
than Markov’s inequality, since it reduces the sample size n to log(2/β)B2/ϵ2 for a
given confidence level β. Similar bounds for stochastic optimization problems involving
expected values have also been established in [27] using tools from empirical process
theory and Talagrand’s inequality (see [43, 44]). However, to the best of our knowledge,
there are currently no universal approaches on how to obtain explicit non-asymptotic
upper bounds for the deviation probability (1.3) that are analogous to (1.4), for general
law-invariant convex risk measures and non-linear goal functions G. Indeed, past works
such as [2] and [27] have obtained bounds on (1.3) that are similar to (1.4) for only
subclasses of ρ andG (see Section 1.1 for a more detailed discussion on related literature).
Moreover, the literature on SAA for risk-averse stochastic optimizations has primarily
focused on risk measures that are closely related to expected utility theory (such as the
optimized certainty equivalent and the robust expected utility, see [5, 14, 18]), while little
attention has been devoted to the equally important class of distortion risk measures
that are motivated by rank-dependent utility theory (see [36, 38, 39]). A major reason
for this is that distortion risk measures are, in general, more difficult to handle due to
their non-linearity in probability.
The main goal of this paper is to address the aforementioned gaps in the literature

on non-asymptotic upper bounds for (1.3). In particular, we pay special attention to
distortion risk measures, for which the conditions of our main results can be simplified
significantly. For a clear presentation, we summarize our non-asymptotic upper bound
on the deviation probability (1.3) in the following informal representation of our main
theorem:
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Main Theorem (Informal) Under certain regularity conditions imposed on the risk
measure ρ, and the assumption that the goal function G(θ, z) is uniformly bounded by
some B > 0 for all θ ∈ Θ and z ∈ Rd, if the function class {G(θ, · | θ ∈ Θ} has a finite
complexity measure (defined by a uniform entropy integral), then there exists a q ≥ 1
that is determined by the risk measure ρ, and constants C1, C2 > 0 that can be calculated
explicitly, such that

P
({∣∣ inf

θ∈Θ
Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣ ≥ ϵ
})

≤ exp
(
−C1nϵ

2q/B2q
)
, (1.5)

for all ϵ > C2/n
1/(2q).

A clear distinction between our bound (1.5) for general law-invariant risk measures
and Hoeffding’s bound (1.4) for expected values is the dependence on a parameter q ≥ 1
in the exponent of ϵ. This indicates that the SAA convergence rate for risk measures,
uniformly over all distributions, is at least 1/n1/(2q), which is worse than the usual
rate 1/

√
n unless q = 1 holds for the risk measure. The dependence on q is not due

to a deficiency in our estimation method, but rather the existence of distortion risk
measures that overweight the tail probability by a power of 1/q. This is stated formally
in Subsection 3.1, where we provide a lower bound on the supremum of the deviation
probability (1.3) over all distributions.
In summary, our contributions are as follows.

• We provide non-asymptotic upper estimation (1.5) for the deviation probability
(1.3) that (i) holds for a general class of convex law-invariant risk measures, (ii)
allows for non-linear goal functions, and (iii) features explicit constants, enabling
the construction of confidence regions. In addition, we provide an upper bound
that is similar to (1.5) for goal functions with unbounded support.

• As compared to previous work by [2] where a similar bound as in (1.5) with a
q-dependence is obtained for linear goal functions, our bound on (1.3) requires less
strict assumptions, achieves a tighter convergence rate with a smaller q, and is
derived using different proof techniques, based on an empirical process “peeling
device” and McDiarmid’s concentration inequality [31].

• In particular, we show that the conditions for our main theorems are significantly
simplified for the class of distortion risk measures and expectiles, providing explicit
upper bounds on (1.3) that are easily obtainable for these risk measures. Moreover,
our estimation methodology can also be adapted to provide an upper bound on
(1.3) for rank-dependent utility risk measures, where the distortion function has
an inverse S-shape.

In the following subsection, we review some of the existing literature.
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1.1. Related literature

Sample average approximation for risk-neutral stochastic programs has been well studied
in the literature, where a general survey can be found in [26]. Consistency and asymp-
totic normality for both the optimal values and solutions are established in works such
as [40, 42, 41]. Non-asymptotic lower and upper confidence bounds on the deviation
probability (1.3) for risk-neutral stochastic programs have been provided by [21], under
the assumption that the goal function G is convex in the decision variable and additional
sub-Gaussian conditions are imposed on the distributions of G(θ, Z1)−EP[G(θ, Z1)]. On
the other hand, [27] was able to provide non-asymptotic upper estimates on (1.3) for
more general goal functions G, but not for a lower estimate.
The most related works on non-asymptotic upper bounds for SAA of risk-averse

stochastic programs are [2] and [27]. [2] provides non-asymptotic convergence rates
for SAA of stochastic programs with general convex risk measures, both for the devia-
tion probability and the expected deviation. However, their bounds do not have explicit
constants, and the goal function G in the stochastic program is restricted to linear
cases, and is uniformly bounded in θ ∈ Θ when estimating the deviation probability.
By contrast, the upper bounds provided by [27] do allow for nonlinear, unbounded goal
functions and have explicit constants, but are only available for stochastic programs
where the risk measures are expected loss, upper semi-deviations, and divergence risk
measures. Our work significantly extends the results of these two papers by establishing
non-asymptotic upper bounds for SAA of stochastic programs with (i) general risk func-
tionals encompassing convex risk measures and rank-dependent utility functionals with
inverse S-shaped probability weighting functions, where (ii) the goal functions may be
nonlinear and unbounded, and (iii) the bounds feature explicit constants. The explicit-
ness of the constants enables the construction of confidence regions. In addition, when
the goal functions G are uniformly bounded, our non-asymptotic upper bound yields
convergence rates that are tighter than [2].
As an alternative to SAA, recent work by [9] also investigated the approximation of

risk-averse stochastic programs using the stochastic gradient Langevin dynamics method.
Under the assumption that the goal function is bounded, Lipschitz continuous, with a
bounded gradient, they obtained explicit non-asymptotic upper bounds on the mean
squared approximation error that decay with a rate of 1/n to the remaining positive
constants that depend on the choice of the parameters. As compared to our work, this
upper bound on the mean squared error is a more conservative moment bound for the
deviation probability (1.3) in the sense that our bound decays exponentially with n to
zero. However, we do note that their bound is independent of the dimension of the
decision space Θ.
Asymptotic approximations of SAA for risk-averse stochastic programs have also been

studied by [28], in the case of expected loss, upper semi-deviations, and divergence risk
measures. Central limit theorems for risk-averse stochastic programs have also been
established by [7] for risk measures that are composite functionals, and by [22] for risk
measures that have a discrete Kusuoka [29] representation. A central limit theorem for
law-invariant coherent risk measures in the non-optimization setting has been studied
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by [4] and [34].

1.2. Outline

This paper is organized as follows. Section 2 summarizes the main assumptions that
are made in this work and introduces the necessary preliminaries. Section 3 presents
the main result (1.5) in a formal setting. Moreover, we also discuss the main assump-
tions imposed on the risk measures that are made throughout this paper and show that
they can be simplified for some canonical examples of convex risk measures, such as the
distortion risk measures with concave distortion functions. Section 4 shows the appli-
cation of our main result in Section 3 to the estimation of the deviation probability for
distortion risk measures with an inverse S-shaped distortion function, which is a major
class of non-convex risk measures that are extensively used in behavioral economics (see,
e.g., [48]). Section 5 extends the main result, namely Theorem 3.4, to unbounded goal
functions. Finally, the proofs of the main results are provided in Section 7.

2. Set up

Let (Ω,F ,P) be a fixed atomless complete probability space, and let Lp(Ω,F ,P) denote
the usual Lp-space on (Ω,F ,P) (p ∈ [1,∞]), where we tacitly identify random variables
that are different on P-null sets only. Furthermore, X stands for some R-vector space
of P-integrable random variables, enclosing all P-essentially bounded random variables.
The vector space X will be equipped with a norm ∥ · ∥X and the P-a.s. order ⪰P such
that (X , ∥ · ∥X ,⪰Q) is a Banach lattice which is solid, i.e., X ∈ X if |Y | ≥ |X| for some
Y ∈ X , and rearrangement invariant, meaning that a random variable X on (Ω,F ,P)
belongs to X whenever it has the same distribution as some Y ∈ X . In addition, we
assume

lim
k→∞

∥X −X ∧ k∥X = 0, for nonnegative X ∈ X . (2.1)

Prominent examples are provided by Lp(Ω,F ,P) with the usual Lp-norm for p ∈ [1,∞].
Next, let us fix any law-invariant convex risk measure, ρ : X → R, which by definition

is a convex mapping satisfying, in addition, the following properties.

• monotonicity:

ρ(X) ≤ ρ(Y ) for X, Y ∈ X with X ≤ Y P− a.s.,

• cash-invariance:

ρ(X + c) = ρ(X) + c for X ∈ X , c ∈ R,

• law-invariance:

ρ(X) = ρ(Y ) for indentically distributed X, Y ∈ X .
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If in addition ρ is positively homogeneous (meaning ρ(λX) = λρ(X) for any λ ≥ 0),
then ρ is called a law-invariant coherent risk measure. Throughout this paper, we also
impose the following additional property for ρ.

• Lebesgue property
lim
k→∞

ρ(Xk) = ρ(X)

for any sequence (Xk)k∈N in X which is uniformly bounded w.r.t. the P-essential
sup-norm and converges P-a.s. to X ∈ X .

The Lebesgue property is always fulfilled if X contains at least one random variable
which is not P-essentially bounded (see [10, Theorem 3]).

The outstanding example of a law-invariant convex risk measure with the Lebesgue
property is provided by the Average Value at Risk, which we recall now.

Example 2.1 Let α ∈ (0, 1). Then the mapping ρ = AV@Rα : L1(Ω,F ,P) → R,
defined by

AV@Rα(X) =
1

1− α

ˆ
[α,1)

F←X (u) du,

where F←X denotes the left-continuous quantile function of the distribution function FX ,
is called the Average Value at Risk w.r.t. α (e.g. [18], [42]). It has the following useful
representation

AV@Rα(X) = inf
x∈R

E
[
(X − x)+

1− α
+ x

]
, for X ∈ L1(Ω,F ,P), (2.2)

(see e.g., [25]). In particular, AV@Rα may be identified as a law-invariant coherent risk
measure.

The Average Value at Risk is the building block of all law-invariant convex risk measures
that satisfy the Lebesgue property due to the Kusuoka representation, given by

ρ(X) = sup
µ∈dom(βρ)

(ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

)
, (2.3)

where dom(βρ) denotes the effective domain of the function βρ (see Proposition A.1 in
Appendix A) defined as

βρ : M
(
[0, 1)

)
→ R ∪ {∞}, µ 7→ sup

X∈L∞(Ω,F,P)
ρ(X)≤0

ˆ
[0,1)

AV@Rα(X) µ(dα), (2.4)

where M
(
[0, 1)

)
is the set of all Borel probability measures on [0, 1), and AV@R0 stands

for the expectation.
The Kusuoka representation is a powerful tool for deriving an upper bound for the

deviation probability (1.3), as it allows us to decompose ρ into smaller “pieces” of
AV@Rα that are easier to analyze. Indeed, the SAA of AV@Rα is itself a standard
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stochastic optimization problem involving the expected value due to the representation
(2.2). Convenient ways to find upper bounds of the deviation probabilities (1.3) for
expected values may be provided by general devices from empirical process theory, which
are based on covering numbers for classes of Borel measurable mappings from Rd into
R w.r.t. Lp-norms. Therefore, we restrict ourselves to goal functions G that satisfy
the following properties, which are conventional for the applications of empirical process
theory in stochastic programming.

(A 1) G(θ, ·) is Borel measurable for every θ ∈ Θ.

(A 2) There exists a strictly positive Borel measurable mapping ξ : Rd → R such that
ξ(Z1) ∈ X

sup
θ∈Θ

|G(θ, z)| ≤ ξ(z) for z ∈ Rd.

(A 3) There exists an at most countable subset Θ̄ ⊂ Θ and (Pz)n-null sets Nn such that

inf
θ∈Θ̄

E
[
|G(θ, Z1)−G(θ̃, Z1)|

]
= inf

θ∈Θ̄
max

j∈{1,...,n}
|G(θ, zj)−G(θ̃, zj)| = 0,

for n ∈ N, θ̃ ∈ Θ, and (z1, . . . , zn) ∈ Rdn \Nn.

(A 1) and (A 2) are standard conditions imposed on function classes. (A 3) is used for
establishing measurability for (1.3) (see e.g., Lemma 7.1).
The complexity of a function class is measured by its uniform entropy integral and

covering numbers. We recall these concepts adapted to our situation. Let us fix any non-
void function class F of Borel measurable mappings from Rd into R and any probability
measure Q on B(Rd) with metric dQ,p induced by the Lp-norm ∥ · ∥Q,p for p ∈ [1,∞).

• Covering numbers for F
We use N

(
η,F, Lp(Q)

)
to denote the minimal number to cover F by closed dQ,p-

balls of radius η > 0 with centers in F. We define N
(
η,F, Lp(Q)

)
:= ∞ if no finite

cover is available.

• An envelope of F is defined as some Borel measurable mapping CF from Rd into
R satisfying suph∈F |h| ≤ CF. If an envelope CF has strictly positive outcomes, we
shall speak of a positive envelope.

• Mfin denotes the set of all probability measures on B(Rd) with finite support.

• The uniform entropy integral for a class F of Borel measurable functions from Rd

into R with an arbitrary positive envelope CF of F is denoted as:

J(F, CF, δ) :=

ˆ δ

0

sup
Q∈Mfin

√
log
(
2N
(
ε ∥CF∥Q,2,F, L2(Q)

))
dε. (2.5)
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For our purposes, the following function class is the most relevant one, which we
denote by:

FΘ := {G(θ, ·) | θ ∈ Θ}. (2.6)

The derivation of our upper bound on the deviation probability (1.3) requires a finite
uniform entropy integral for the function class (2.6). There are many examples of func-
tion classes with explicit upper bounds on J(F, CF, δ) that are provided in Section 2 of
[27]. We state here one of the examples, namely if G(θ, z) satisfies the Hölder condition
for θ ∈ Rm, z ∈ Rd: i.e., there exists a β ∈ (0, 1), and a square PZ-integrable strictly
positive mapping C : Rd → (0,∞), such that for z ∈ Rd, θ1, θ2 ∈ Θ:

|G(θ1, z)−G(θ2, z)| ≤ C(z)∥θ1 − θ2∥β2 ,

then, under some mild conditions imposed on G (see Proposition 2.6 of [27]), one has
for δ ∈ (0, 1/2],

J(FΘ, ξ, δ) ≤ 2δ

√
(3m+ 1) ln(2) +

m

β
ln(2/δ),

where ξ ≡ C∆(Θ)β+ |G(θ̄, .)| is an envelope function for FΘ, ∆(Θ) denotes the diameter
of Θ, and θ̄ ∈ Θ is a point where G is square PZ-integrable.

3. Deviation probabilities

Throughout this section, we restrict ourselves to law-invariant convex risk measures ρ
which are normalized, meaning ρ(0) = 0, and goal functions G(θ, z) that are uniformly
bounded in θ, i.e., (A 2) is satisfied with ξ ≡ B for some 0 < B < ∞. As our first
result, we examine coherent risk measures, for which an upper bound on the deviation
probability (1.3) can be established under the following assumption imposed on ρ:

(A 4) There exists some q ∈ [1,∞) such that

N q := sup
t∈(0,1]

hρ(t)

t1/q
<∞,

where we introduce the auxiliary mapping

hρ : [0, 1] → R, t 7→ ρ
(
1([1−t],1)(U)

)
,

where U denotes any random variable on the atomless probability space (Ω,F ,P) which
is uniformly distributed on (0, 1). Under (A 4), we may state the following Theorem:
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Theorem 3.1 Let ρ be a law-invariant coherent risk measure which satisfies the Lebesgue
property, and let assumptions (A 1), (A 2), (A 3) and (A 4) be fulfilled with q ∈ [1,∞),
ξ ≡ B ∈ R, and constant N q ∈ R. If J(FΘ, B, 1/8) is finite, then,

P
({∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ε

})
≤ P∗

(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ϵ

)
≤ exp

(
− n t2 ε2q

24q+1 (t+ 1)2 B2q N
2q

q

)

holds for t > 0 if

ε > N q ·B [22q−1 128 (t+ 1)
√
2]1/q

[
J
(
FΘ, B, 1/8

)
+ 3/2

]1/q
/n1/(2q).

Here P∗ denotes the outer probability w.r.t. P.

As we illustrate in the following examples, condition (A 4) is very explicit for some
major classes of risk measures. In particular, when ρ belongs to the class of distortion
risk measures, the auxiliary function hρ becomes the distortion function, making (A 4)
easily assessable.

Example 3.2 A concave distortion function is a concave non-decreasing mapping h :
[0, 1] → [0, 1] satisfying h(0) = 0 and h(1) = 1. Every such mapping h induces via

ρh(X) :=

ˆ 0

−∞

[
h(P(X > x))− 1

]
dx+

ˆ ∞
0

h(P(X > x)) dx

a coherent risk measure on X consisting of all random variables X on (Ω,F ,P) satisfying

∥X∥h :=

ˆ ∞
0

h(P(|X| > x)) dx <∞ (3.1)

(see e.g. [13] or [18]). This is because ρh may be viewed as a Choquet integral w.r.t. the
submodular set function h(P).
The set X is a vector space, and the mapping ∥ · ∥h, defined by (3.1), is a norm on X

(see [13, Proposition 9.4]). Moreover, if h is continuous, then X , endowed with ∥·∥h and
the P-a.s. order ⪰P is a solid, rearrangement invariant Banach lattice meeting property
(2.1) (see [13, Proposition 9.5 with Theorem 8.9]). Continuity of h also implies the
Lebesgue property (see [13, Theorem 8.9]).

Easy calculation reveals that the auxiliary function hρh coincides with the distortion
function h. Hence, (A 4) is fulfilled iff supt∈(0,1] h(t)/t

1/q < ∞ for some q ∈ [1,∞). In

Table 1, we provide examples of distortion functions with upper bounds for the terms N q

and the range rg(q) of q such that (A 4) holds.

Next, we shall focus on expectiles, genuinely introduced in the paper [33].
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Distortion Family h(p), p ∈ [0, 1] N q rg(q)
Proportional Hazard pa, a ∈ (0, 1) 1 q ≥ 1/a

Gini Principles (1 + a)p− ap2, a ∈ (0, 1) 1 + a q ≥ 1
Dual Moments 1− (1− p)k, k > 1 k q ≥ 1
MAXMINVAR (1− (1− p)n)1/k, k > 1 k1/k q ≥ k

LB-transform pa(1− log(pa)), a ∈ (0, 1) exp
(
−a+1/q
a(aq−1)

)
aq

aq−1 q > 1/a

Table 1: Examples of distortion functions with upper bounds on N q and the range rg(q)
of q such that (A 4) holds. For Proportional Hazard, see [49]; for Gini Principles,
see [12]; for Dual Moments, see [32] and [16, 15]; for MAXMINVAR, see [8]; for
LB-Transform, see [11].

Example 3.3 For α ∈ (0, 1), the mapping

ρα : L2(Ω,F ,P) → R, X 7→ argmin
x∈R

[
α∥(X − x)+∥22 + (1− α)∥(X − x)−∥22

]
is well-defined and known as the expectile w.r.t. α. It has been shown in [3] that it
is a law-invariant coherent risk measure for any α ∈ [1/2, 1). Fixing α ∈ [1/2, 1), the
associated auxiliary function hρα of ρα satisfies

hρα(t) =
αt

1− α + t(2α− 1)
.

In particular, since α ≥ 1/2,

N q := sup
t∈(0,1]

hρα(t)

t1/q
≤ sup

t∈(0,1]

α

1− α + t(2α− 1)
=

α

1− α
, for every q ∈ [1,∞).

If ρ is a general convex risk measure that is not coherent, then the following condition
is imposed on the representation (2.3).

(A 5) There exists some q ∈ [1,∞) such that

Nq,b := sup
t∈(0,1]

sup
µ∈M([0,1))
βρ(µ)≤b

´
[0,1)

t∧(1−α)
1−α µ(dα)

t1/q
<∞ for b > 0.

We note that for coherent risk measures, (A 5) is equivalent to (A 4), since the function
βρ vanishes on its effective domain due to positive homogeneity of ρ. Under (A 5), we
obtain the following theorem concerning the deviation probability (1.3), which directly
implies Theorem 3.1 when ρ is coherent (by substituting Nq,4B+δ with N q in the following
statement).

11



Theorem 3.4 Let ρ be a normalized law-invariant convex risk measure which satisfies
the Lebesgue property, and let assumptions (A 1), (A 2), (A 3) and (A 5) be fulfilled
with q ∈ [1,∞), ξ ≡ B ∈ R, and constants Nq,b ∈ R (b > 0) as in (A 5). Under these
assumptions, the mapping

inf
θ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

is a random variable on (Ω,F ,P). Furthermore, if J(FΘ, B, 1/8) is finite, then

P
({∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ε

})
≤ P∗

(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ϵ

)
≤ exp

(
− n t2 ε2q

24q+1 (t+ 1)2 B2q N2q
q,(4B+δ)

)

holds for t, δ > 0 whenever

ε > Nq,(4B+δ) ·B [22q−1 128 (t+ 1)
√
2]1/q

[
J
(
FΘ, B, 1/8

)
+ 3/2

]1/q
/n1/(2q).

Here P∗ denotes the outer probability w.r.t. P. Moreover, the mapping

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣

is also a random variable on (Ω,F ,P) if in addition G(·, z) is lower semicontinuous for
z ∈ Rd.

The proof may be found in Section 7.1.

Remark 3.5 Theorem 3.4 allows us to construct a confidence region for the unknown
optimal value infθ∈ΘRρ(Fθ). Indeed, given a confidence parameter α0, for any ϵ that sat-

isfies the condition of Theorem 3.4, if the sample size n ≥ log(1/β)
Ct2ϵ2q

for C = 1/(24q+1(t +

1)2B2qN2q
q,4B+δ), then the interval infθ∈ΘRρ(F̂n,θ) ± ϵ contains infθ∈ΘRρ(Fθ) with prob-

ability 1 − β. Moreover, we note that infθ∈ΘRρ(F̂n,θ) is a convex optimization problem
for many risk measures (see, e.g., [6, 5] and [24]).

Although assumption (A 5) is less explicit than (A 4) in the coherent case, we can still
provide some sufficient conditions on (A 5) that are more assessable. This is discussed
in the following remark.

Remark 3.6 Let q ∈ [1,∞) such that representation (2.3) satisfies

M q := sup
µ∈M([0,1))

(ˆ
[0,1)

1

(1− α)1/q
µ(dα)− βρ(µ)

)
<∞. (3.2)

12



Then for any µ from the effective domain of βρ and every t ∈ [0, 1]ˆ
[0,1)

t ∧ (1− α)

1− α
µ(dα) ≤ t1/q

ˆ
[0,1)

1

(1− α)1/q
µ(dα) = t1/q (M q + βρ(µ)).

Hence (A 5) is satisfied with Nq,b =M q + b for b > 0.

A criterion to ensure (3.2) for q ∈ (1,∞) is provided by the property of q-regularity,
which was introduced in [2]. By definition, ρ is called q-regular with q ∈ (1,∞) if for
any random variable Xq on (Ω,F ,P) which is Pareto-distributed with location parameter
1 and scale parameter q

M̂q := sup
k∈N

ρ(Xq ∧ k) <∞.

In terms of the representation (2.3), the application of the monotone convergence theorem
yields

M̂q = sup
µ∈M([0,1))

(ˆ
[0,1)

AV@Rα(Xq) µ(dα)− βρ(µ)

)
= sup

µ∈M([0,1))

(ˆ
[0,1)

q

q − 1

1

(1− α)1/q
µ(dα)− βρ(µ)

)
=

q

q − 1
sup

µ∈M([0,1))

(ˆ
[0,1)

1

(1− α)1/q
µ(dα)− q − 1

q
βρ(µ)

)
.

Finally, 0 = ρ(0) = supµ∈M([0,1))[−βρ(µ)] and therefore βρ is nonnegative. Hence (3.2)

is fulfilled with M q ≤ (q − 1) M̂q/q.

As an application of Remark 3.6, we shall examine utility-based shortfall risk measures.

Example 3.7 Let l : R → R denote a non-constant, non-decreasing convex function,
and x0 be an element from the topological interior of the range of l. Furthermore, it is
assumed that there are N(l) > 0 and p ∈ [1,∞) such that l(x) ≤ N(l) (x+)p holds for
x ∈ R. Then with c0 := inf{c ∈ R | l(−c) ≤ x0},

ρl,x0 : L
p(Ω,F ,P) → R, X 7→ inf

{
x ∈ R | E[l(X − x)] ≤ x0

}
− c0,

defines a normalized law-invariant convex risk measure which satisfies the Lebesgue prop-
erty. As a convex risk measure on a Banach lattice, it is also continuous w.r.t. the
Lp-norm (see [37, Proposition 3.1]).

For any q ∈ (p,∞) every random variable Xq on (Ω,F ,P) which is Pareto-distributed
with location parameter 1 and scale parameter q belongs to Lp(Ω,F ,P). In particu-
lar, supk∈N ρl,x0(Xq ∧ k) = ρl,x0(Xq) for q ∈ (p,∞) due to Lp-norm continuity of ρl,x0.
According to Remark 3.6, condition (A 5) is fulfilled for every q ∈ (p,∞), where the
corresponding constants M q satisfy the following upper estimation

M q ≤
q − 1

q
ρl,x0(Xq) ≤

q − 1

q
inf
{
x ∈ R | E

[(
(Xq − x)+

)p
] ≤ N(l) x0

}
− q − 1

q
c0.

13



3.1. Sharpness of Convergence Rates

In this subsection, we discuss the convergence rate of the sequence(
inf
θ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

)
n∈N

, (3.3)

that can be obtained from the bounds given in Theorems 3.1 and 3.4. An immediate
consequence is that we may provide the following simple criterion for the tightness rates
of the sequence (3.3).

Theorem 3.8 Let ρ be a law-invariant convex risk measure which satisfies the Lebesgue
property, and let assumptions (A 1), (A 2), (A 3) be fulfilled with ξ ≡ B ∈ R and
J(FΘ, B, 1/8) < ∞. If ρ satisfies (A 5) q ∈ [1,∞), or if ρ is coherent and meets (A 4)
with the same q, then the sequence(

n1/(2q)

[
inf
θ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

])
n∈N

is uniformly tight.

Proof Let q ∈ [1,∞) such that ρ satisfies (A 5) with q, or (A 4) with q if ρ is coherent.

Then, applying Theorem 3.4 or Theorem 3.1 both with t = 1, there is some N̂q > 0 such
that

P
({∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ε

n1/(2q)

})
≤ exp

(
− ε2q

24q+3 4 B2q N̂2q
q

)

holds for every ε > N̂q ·B [22q−1 256
√
2]1/q

[
J
(
FΘ, B, 1/8

)
+3/2

]1/q
and any n ∈ N. In

particular,

lim
ε→∞

lim sup
n→∞

P
({

n1/(2q)

∣∣∣∣ infθ∈Θ
Rρ(F̂n,θ)− inf

θ∈Θ
Rρ(Fθ)

∣∣∣∣ ≥ ε

})
= 0

which completes the proof. 2

Theorem 3.8 provides a means of characterizing the convergence rate of the sequence
(3.3), in the sense that (3.3) is bounded by ϵ/n1/(2q) with high probability, uniformly
over all distributions, if ϵ is a sufficiently large constant. A similar conclusion on the
n−1/(2q) convergence rate is established in Theorem 5.1 of [2], which only holds for linear
goal functions and q > 1. We emphasize that compared to [2], our Theorem 3.4 provides
a strict improvement for the convergence rate. Indeed, besides the fact that Theorem
3.4 holds for nonlinear goal functions, it also includes cases where the best possible n−1/2

rate can be achieved. This is true for risk measures such as the Average Value at Risk,
the Expectiles from Example 3.3, and the Dual Moments distortion risk measures as
in Table 1, where Theorem 3.8 holds for q = 1. The rate improvement is not only for
risk measures that satisfy (A 5) for q = 1. For example, the MAXMINVAR distortion
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risk measure of order k > 1 in Table 1 satisfies the condition of Theorem 5.1 in [2] only
for q > k, whereas Table 1 shows that Theorem 3.8 also holds for MAXMINVAR with
q = k. As we mentioned earlier in Remark 3.6, (A 5) is a more general condition than
the “q-regularity” imposed by [2].
It is also important to investigate whether the factor ϵ2q in the bounds of Theorem

3.1 and 3.4 can be replaced by ϵ2, which would then yield the usual 1/
√
n convergence

rate for q > 1. In the following theorem, we state that it is impossible to achieve this
independence of q, meaning our bounds provide convergence rates that are tight up to
a factor of two, uniformly over all distributions.

Theorem 3.9 For any q ≥ 1, there exists a coherent risk measure ρ, such that N q <∞
as in (A 4), and

sup
Q

Q
(∣∣∣Rρ(F̂n)−Rρ(F )

∣∣∣ ≥ ϵ
)
≥ 1√

2q+3
exp

(
−C̃qnϵ

q(1 +O(ϵ2))
)
,

for all n ≥ 3 and 1/(2n1/q) ≤ ϵ ≤ (1 − 1/n)1/q/2 ∧ 1/4, where the supremum is taken
over all probability measure Q on (Ω,F), F̂n, F are the empirical and true distribution
functions under Q, and

C̃q := 2q+1(q + 1) log(2)− 2q − 1

1− 1/2q
+

1

2
.

The proof is provided in Section 7.2.

3.2. Alternative Bound for Coherent Risk Measures

Until now, we have derived upper bounds on the deviation probability (1.3) under as-
sumption (A 4) for coherent risk measures, namely that the auxiliary function hρ(t)
must approach zero at a rate of t1/q for some q ≥ 1. For coherent risk measures that
do not satisfy (A 4), we can still derive an upper bound on the deviation probability by
modifying the estimation technique in the proof of Theorem 3.4. This is stated in the
following theorem.

Theorem 3.10 Let ρ be a normalized law-invariant coherent risk measure that satisfies
the Lebesgue property, and assumptions (A 1), (A 2), (A 3) be fulfilled with ξ ≡ B ∈ R
and finite J(FΘ, B, 1/8). Then Kε := inf

{
K ∈ N | 4B hρ(2

−K+1) < ε
}
is well-defined

for any ϵ > 0, and

P
({∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ε

})
≤ P∗

(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ϵ

)
≤ 1

2304 t2 ln(4)
exp

(
− n t2 ε2

8 4Kε (t+ 1)2 B2

)
,

holds for t > 0 and

ε > 2Kε−1 128 (t+ 1)
√
2 B

[
J
(
FΘ, B, 1/8

)
+ 3/2

]
/
√
n

Here P∗ denotes the outer probability w.r.t. P.
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The proof may be found in Section 7.3. We note that Theorem 3.10 holds under very
general conditions, namely that Kϵ always exists due to the Lebesgue property. As a
tradeoff, the bound can be conservative for small ϵ, since it depends exponentially on
Kϵ. An application of Theorem 3.10 will be given in Section 4, when we estimate the
deviation probability for inverse S-shaped distortion risk measures.

4. Distortion Risk Measures with Inverse S-Shaped
Distortion Function

Let h : [0, 1] → [0, 1] be a non-decreasing distortion function such that h(0) = 0,
h(1) = 1. We say that h is inverse S-shaped, if there exists a p0 ∈ (0, 1) such that h is
concave on [0, p0], but convex on [p0, 1].
For any distortion function h, we also define the dual function h̄(p) := 1 − h(1 − p).

For an inverse S-shaped distortion function, we also define h0(p) = min{h(p), h(p0)} and
h̄0(p) := min{h̄(p), 1−h(p0)}, for p ∈ [0, 1]. Note that both h0 and h̄0 are non-decreasing
concave functions on [0, 1], and we denote their normalized versions respectively as
hcc := h0/h(p0) and hcv := h̄0/(1− h(p0)).

Lemma 4.1 Let h be an inverse S-shaped distortion function. Then, we have that

ρh(X) = h(p0)ρhcc(X)− (1− h(p0))ρhcv(−X).

Therefore, we see that upper bounds on the deviation probability for distortion risk
measures with inverse S-shaped distortion functions can be provided by bounding their
concave and convex parts separately. We state this in the following theorem, where
N q,cc, N q,cv denote the constants in (A 4) for hcc and hcv (recall that by Example 3.2,
hρh(t) = h(t)).

Theorem 4.2 Let ρh be a distortion risk measure with an inverse S-shaped distortion
function. Let (A 1), (A 2) with ξ ≡ B ∈ R, (A 3), (A 4) be fulfilled with q1, q2 ∈ [1,∞)
such that N q1,cc, N q2,cv <∞. Suppose that J(FΘ, B, 1/8) is finite. Then,

P∗
({

sup
θ∈Θ

∣∣Rρh

(
F̂n,θ

)
−Rρh

(
Fθ

)∣∣ > ϵ
})

≤ exp

(
− n t2 ε2q1

26q1+1 (t+ 1)2 B2q1 h(p0)2q1N
2q1
q1,cc

)

+ exp

(
− n t2 ε2q2

26q2+1 (t+ 1)2 B2q2 (1− h(p0))2q2N
2q2
q2,cv

)
,

holds for t > 0 if,

ε > max
(q,c)∈{(q1,cc),(q2,cv)}

N q,c ·B [22q−1 128 (t+ 1)
√
2]1/q

[
J
(
FΘ, B, 1/8

)
+ 3/2

]1/q
/n1/(2q)

·max{h(p0), 1− h(p0)}.
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Here, P∗ denotes the outer probability w.r.t. P.

Example 4.3 Let h1, h2 be two distortion functions that satisfy (A 4) with q1, q2 ≥ 1
(such as the examples in Table 1). Let p0 ∈ (0, 1). Then, the function

hS(p) =

{
h1(p) p ≤ p0

1− 1−h1(p0)
h2(1−p0)h2(1− p) p ≥ p0,

is an inverse S-shaped distortion function, such that the corresponding hScc, h
S
cv satisfies

N q1,cc, N q2,cv <∞.

Example 4.4 Consider the Kahneman-Tversky function (see [45]), which is defined as

h(p) = 1− (1− p)β

((1− p)β + pβ)1/β
, 0 < β < 1.

One can show that the Kahneman-Tversky function satisfies N q,cc, N q,cv < ∞, for q =
1/β. We provide the details in Section 8.2.

However, there are inverse S-shaped distortion functions for which their convex part hcv
does not satisfy N q,cv < ∞ for any q ≥ 1. One prominent example of this is Prelec’s
distortion function (see [35]), defined as

h(p) = 1− exp (−(− log(1− p))α) , 0 < α < 1.

Indeed, for Prelec’s distortion function, we have that for p ≤ 1/e,

hcv(p) = exp (−(− log(p))α) · 1

1− h(1/e)
, 0 < α < 1.

However, since for any q ≥ 1,

lim
p↓0

exp (−(− log(p))α)

p1/q
= lim

p↓0
exp

(
1

q
log

(
1

p

)(
1− logα−1

(
1

p

)))
= ∞,

we have that N q,cv = ∞ for any q ≥ 1. Hence, Theorem 4.2 cannot be applied to Prelec’s
function. Instead, one should use Theorem 3.10 to estimate the deviation probability
for the convex part hcv of Prelec’s function.

5. Unbounded Case

In this section, we provide an extension of Theorem 3.4 to goal functions G with un-
bounded support. This requires several technical adjustments to the proof of Theo-
rem 3.4, namely

1. Instead of a uniform bound B as the envelope function, we assume that ξ is
integrable up to some order r ≥ 2 (i.e., ∥ξ∥PZ ,r <∞).
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2. The deviation quantity Rρ(F̂n,θ)−Rρ(Fθ) is decomposed into a part with bounded
goal functions for the application of Theorem 3.4, and a remaining part that re-
quires further estimation.

3. A new upper bound b is established on the penalty function βρ(µ) in the definition
of Nq,b as in (A 5), which can no longer be taken as 4B + δ, as in Theorem 3.4.

Given an envelope function ξ with ∥ξ∥PZ ,r < ∞, the decomposition step of the afore-
mentioned technical adjustment is carried out by introducing an auxiliary function
ϕr,n : R → R defined by ϕr,n(x) := (x ∧ wr,n) ∨ (−wr,n), where for n ∈ N, we set
wr,n := (2n)1/r ∥ξ∥PZ ,r. Note that the image of ϕr,n is always contained in the interval
[−wr,n, wr,n]. The purpose of ϕr,n is solely to restrict the objective function G on a com-
pact support, as we will consider the class of functions ϕr,n(G(θ, Z)) for θ ∈ Θ. We let

F
ϕr,n

θ to denote the distribution function of ϕr,n(G(θ, Z)), and F̂
ϕr,n

θ the corresponding
empirical distribution function based on Z1, . . . , Zn.
To make the third technical adjustment, we impose the following condition on the

Kusuoka representation (2.3), which, by Remark 3.6, also provides a sufficient condition
on (A 5).

(A 6) There exists r, q ∈ [1,∞) with r ≥ q ∨ 2, such that ∥ξ∥PZ ,r <∞ and

M
ξ

r,q := sup
µ∈dom(βρ)

(ˆ
[0,1)

(4 ∥ξ∥PZ ,r) ∨ 1

(1− α)1/q
µ(dα)− βρ(µ)

)
<∞.

We note that similarly as in Remark 3.6, an upper bound on M
ξ

r,q can also be provided
by the q-regularity condition introduced in [2], namely one has

M
ξ

r,q ≤
q − 1

q
sup
k∈N

ρ(X∗[4∥ξ∥PZ,r
]∨1,q ∧ k),

where X∗λ,q is the Pareto distribution with scale parameter λ > 0 and shape parameter
q.

Finally, besides the auxiliary function ϕr,n, we also introduce the auxiliary events,

Bξ
n,r :=

{ 1
n

n∑
j=1

ξ(Zj)
r ≤ 2E[ξ(Z1)

r]
}

(n ∈ N). (5.1)

After introducing all the necessary notations, we can state the following theorem on the
deviation probability (3), when G has unbounded support.

Theorem 5.1 Let ρ be a normalized law-invariant convex risk measure which satisfies
the Lebesgue property, and let assumptions (A 1), (A 2), (A 3) and (A 6) be fulfilled for

some q ∈ [1,∞) and r ≥ q ∨ 2. Denote br,δ := 2M
ξ

r,q + δ. Then, the mapping

inf
θ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)
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is a random variable on (Ω,F ,P). Moreover, if J(FΘ, ξ, 1/4) <∞, then for any t, δ > 0,

P
(∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ϵ

)
≤ P∗

(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ϵ

)
≤ exp

(
− n1−2q/r t2 ε2q

28q−1 (t+ 1)2 N2q
q,br,δ

∥ξ∥2qPZ ,r

)
+ P

(
Ω \Bξ

n,r

)
whenever t, δ > 0 and

ε >

(
64
√
2(t+ 1) [J(FΘ, ξ, 1/8) + 3/2]

)1/q
8Nq,br,δ∥ξ∥

1−1/q
PZ ,r

n1/(2q)+(1−q)/(rq)

+
4[3M

ξ

r,q + δ] ∥ξ∥PZ ,rn
(2−r)/(2rq)

n1/(2q)+(1−q)/(rq) .

Remark 5.2 If ρ is coherent, then Theorem 5.1 can be modified by replacing (A 6) with
(A 4), Nq,br,δ with N q, and the lower bound on ϵ with

ε >

(
64
√
2(t+ 1) [J(FΘ, ξ, 1/8) + 3/2]

)1/q
8N q∥ξ∥1−1/qPZ ,r

n1/(2q)+(1−q)/(rq)

+
8q/(r − q)N q ∥ξ∥PZ ,rn

(2−r)/(2rq)

n1/(2q)+(1−q)/(rq) .

The details can be found in Section 7.8.

The proof of Theorem 5.1 is presented in Section 7.6. Let us discuss the further estima-
tion of the probability P(Ω \ Bξ

n,r), which is similar to the case of r = 2 as discussed in

Remark 3.2 of [27], using the substitution ξ̃ = ξr/2.

Remark 5.3 We have the following estimations on P(Ω \Bξ
n,r).

(1) If ξ(Z1) is integrable of order 2r, then Cantelli’s inequality implies

P(Ω \Bξ
n,r) ≤

Var[ξr(Z1)]

nE[ξr(Z1)]2 +Var[ξr(Z1)]
.

(2) If E[exp(λξr(Z1))] <∞ for some λ > 0, then by Remark 3.2 of [27], we have that

P(Ω \Bξ
n,r) ≤ exp

(
−nE[ξr(Z1)]

2/(8δ20)
)
∨ exp (−nE[ξr(Z1)]/(4δ0)) ,

for n ∈ N and

δ0 ≥ sup
k∈N,k≥2

(∣∣E [(ξr(Z1)− E[ξr(Z1)])
k
]∣∣ /k!)1/k .
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Finally, let us comment on the bound in Theorem 5.1. Note that if G is uniformly
bounded in θ, then we may take ξ ≡ B <∞, which means r = ∞ and P(Ω \Bξ

n,r) = 0.

Then, the rate in Theorem 5.1 recovers back to n−1/(2q), which is the same as in Theorem
3.4 for the bounded case. Moreover, combining the estimation of P(Ω \Bξ

n,r) in Remark
5.3, the bound in Theorem 5.1 yields a smaller confidence region for the true optimal
value infθ∈ΘRρ(Fθ) than the moment bound provided in [2], which through Markov’s
inequality decays in the order of 1/n1/(q(2−1/r))−1/(r−2), which is always slower than 1/

√
n.

6. Conclusion and Discussion

By utilizing the Kusuoka representation of law-invariant convex risk measures and tools
from empirical process theory, we obtain non-asymptotic upper estimations on the devi-
ation probability (1.3) under more general conditions imposed on the goal functions and
risk measures, as compared to [2] and [27]. As a direction of future research, it would
be valuable to investigate further the tightness of the rate n−1/(2q) in Theorem 3.4 for
q > 1.

7. Proofs

Lemma 7.1 Let assumptions (A 1) - (A 3) be fulfilled. If ρ satisfies the Lebesgue
property, then the mapping

inf
θ∈Θ

Rρ(Fθ)− inf
θ∈Θ

Rρ(F̂n,θ)

is a random variable on (Ω,F ,P) for every n ∈ N. If in addition G is lower semicon-
tinuous in θ, then the mapping

sup
θ∈Θ

∣∣Rρ(Fθ)−Rρ(F̂n,θ)
∣∣

is also a random variable on (Ω,F ,P).

Proof First of all {Rρ(Fθ) | θ ∈ Θ} is bounded from below due to (A 2). Fix any
n ∈ N. Furthermore, let ξ be from (A 2), and let Θ be some at most countable subset
of Θ as in assumption (A 3). The left-continuous quantile function of a distribution
function F will be denoted by F←. We may select some random variable U on the
atomless probability space (Ω,F ,P) which is uniformly distributed on (0, 1).

By assumption (A 3), there is some An ∈ F with P(An) = 1 such that

inf
ϑ∈Θ

max
j∈{1,...,n}

{∣∣G(θ, Zj(ω)
)
−G

(
ϑ, Zj(ω)

)∣∣} = 0 for ω ∈ An, θ ∈ Θ.

Let ω ∈ An and θ ∈ Θ be arbitrary. We may find some sequence (ϑk)k∈N in Θ such that

F̂n,ϑk|ω(x) → F̂n,θ|ω(x) at every continuity point x of F̂n,θ|ω. Then F̂
←
n,ϑk|ω(α) → F̂←n,θ|ω(α)

at every continuity point α of F̂←n,θ|ω(α) (see e.g. [46, Lemma 21.2]). In particular,
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F̂←n,ϑk|ω(U) → F̂←n,θ|ω(U) P-a.s.. Since in addition the sequence
(
F̂←n,ϑk|ω(U)

)
k∈N is uni-

formly bounded by maxj∈{1,...,n} ξ
(
Zj(ω)

)
, Lebesgue property of ρ implies

ρ
(
F̂←n,ϑk|ω(U)

)
→ ρ

(
F̂←n,θ|ω(U)

)
. (7.1)

Finally, note that F̂←n,ϑ|ω(U) is distributed according to the empirical distribution based

on G
(
ϑ, Z1(ω)

)
, . . . , G

(
ϑ, Zn(ω)

)
for ϑ ∈ Θ and ω. Thus, we have shown

inf
ϑ∈Θ

Rρ(F̂n,ϑ|ω) = inf
θ∈Θ

Rρ(F̂n,θ|ω) for ω ∈ An.

Since Θ is at most countable, and (Ω,F ,P) is complete, it remains to show that Rρ(F̂n,θ)
is a random variable on (Ω,F ,P) for every θ ∈ Θ.
For this purpose, let F←(x1,...,xn)

denote the left-continuous quantile function of the

empirical distribution function based on (x1, . . . xn) ∈ Rn. In the same way as we derived
convergence (7.1), we may use the Lebesgue property again to verify the continuity of
the mapping,

φ : Rn → R, (x1, . . . , xn) 7→ ρ
(
F←(x1,...,xn)(U)

)
.

Thus Rρ(F̂n,θ) = φ◦
(
G(θ, Z1), . . . , G(θ, Zn)

)
is a random variable on (Ω,F ,P) for every

θ ∈ Θ.
For the remaining part of the proof, let us assume that G(·, z) is lower semicontinuous

for every z ∈ Rd. Note that G(·, z) is bounded due to (A 2), and by (A 3) we may find
some A ∈ F with P(A) = 1 such that

inf
θ∈Θ

(
G
(
θ, Z1(ω)

)
− ψ(θ)

)
= inf

θ∈Θ

(
G
(
θ, Z1(ω)

)
− ψ(θ)

)
for ω ∈ A.

for any continuous mapping ψ : Θ → R. This implies that

inf
θ∈Θ

(
G
(
θ, Z1

)
− ψ(θ)

)
is a random variable on (Ω,F ,P) for any continuous mapping ψ : Θ → R, because Θ
is countable and (Ω,F ,P) is complete. Since Θ is compactly metrizable, we may draw
on Theorem 2.1 and Remark 1.1 both from [30] to conclude that G is measurable w.r.t.
the product σ-algebra B(Θ) ⊗ B(Rd) of the Borel σ-algebra B(Θ) on Θ and the Borel
σ-algebra B(Rd) on Rd. As a further consequence, φ ◦

(
G(·, Z1), . . . , G(·, Zn)

)
is also

B(Θ) ⊗ B(Rd) measurable. Moreover, in view of Corollary A.3 in Appendix A along
with assumption (A 2), the mapping

Θ → R, θ 7→ ρ
(
G(θ, Z1)

)
(7.2)

is lower semicontinuous. Therefore, the mapping

Θ× Ω → R, (θ, ω) 7→ φ ◦
(
G
(
θ, Z1(ω)

)
, . . . , G

(
θ, Zn(ω)

))
− ρ
(
G(θ, Z1)

)
,
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is B(Θ) ⊗ B(Rd) measurable, and it is also bounded in θ for every ω ∈ Ω due to (A 2)
along with the monotonicity of ρ. Hence, completeness of (Ω,F ,P) implies that

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ = sup

θ∈Θ

∣∣φ ◦
(
G(θ, Z1), . . . , G(θ, Zn)

)
− ρ
(
G(θ, Z1)

)∣∣
is a random variable on (Ω,F ,P) (see [47, Example 1.7.5]). This completes the proof.

2

In the following proofs, we shall make use of the usual notation from empirical process
theory

(Pn − P)(f) :=
1

n

n∑
j=1

(
f(Zj)− E[f(Zj)]

)
(7.3)

for PZ-integrable mappings f : Rd → R.

7.1. Proof of Theorem 3.4

First of all, the mapping
inf
θ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

is a random variable on (Ω,F ,P) due to Lemma 7.1, and if G is lower semicontinuous
in θ, then Lemma 7.1 tells us that

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ,

is also a random variable on (Ω,F ,P). Note that the following inequality is valid for
any ϵ > 0:

P
({∣∣∣∣ infθ∈Θ

Rρ(F̂n,θ)− inf
θ∈Θ

Rρ(Fθ)

∣∣∣∣ ≥ ε

})
≤ P∗

(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ϵ

)
.

Recall that G is uniformly bounded by B. Hence, for every, θ ∈ Θ,

Rα(Fθ) = inf
|x|≤B

E
[(
G(θ, Z1)− x

)+
+ (1− α)x

]
/(1− α),

Rα(F̂n,θ) = inf
|x|≤B

1

n

n∑
j=1

[(
G
(
θ, Zj

)
− x
)+

+ (1− α)x
]
/(1− α).

Define the function class FΘ
B := {[G(θ, ·) − x]+ | θ ∈ Θ, x ∈ [−B,B]}, and furthermore

∆n := supf∈FΘ
B
|(Pn − P)(f)|. We obtain∣∣∣Rα(Fθ)−Rα(F̂n,θ)

∣∣∣ ≤ 1

1− α
sup
|x|≤B

∣∣∣(Pn − P)
([
G(θ, ·)− x

]+)∣∣∣
≤ 1

1− α
sup
f∈FΘ

B

|(Pn − P)(f)| = ∆n

1− α
for α ∈ [0, 1), θ ∈ Θ.
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Let MB,δ := {µ ∈ M | β(µ) ≤ (4B + δ)}, for δ > 0. We obtain from Proposition A.2 in
Appendix A, that

Rα(Fθ) = sup
µ∈MB,δ

(ˆ
[0,1)

Rα(Fθ) µ(dα)− βρ(µ)

)
,

Rα(F̂n,θ) = sup
µ∈MB,δ

(ˆ
[0,1)

Rα(F̂n,θ) µ(dα)− βρ(µ)

)
.

Since the class FΘ
B is uniformly bounded by the constant 2B, we have for any θ and

every δ > 0: ∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≤ sup

µ∈MB,δ

ˆ
[0,1)

∣∣∣Rα(Fθ)−Rα(F̂n,θ)
∣∣∣µ(dα)

≤ sup
µ∈MB,δ

ˆ
[0,1)

(
∆n

1− α
∧ 2B

)
µ(dα). (7.4)

Next, note that ∆n ≤ 2B holds pointwise so that in view of (7.4){
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ > 0

}
⊆ {0 < ∆n ≤ 2B} =

∞⋃
K=0

ΩnK , (7.5)

where ΩnK :=
{
2K−1∆n < 2B ≤ 2K∆n

}
. For K ∈ N and ω ∈ ΩnK we obtain

∆n

1− α
∧ 2B

=
∆n

1− α
for α < 1− 21−K

≤ 2B for α ≥ 1− 21−K .

This implies by (7.4),∣∣∣Rρ(F̂n,θ|ω)−Rρ(Fθ)
∣∣∣

≤ sup
µ∈MB,δ

(
∆n(ω)

ˆ
[0,1−21−K)

1

1− α
µ(dα) + 2B µ

(
[1− 21−K , 1)

))
for θ ∈ Θ, δ > 0.

Furthermore, for any Borel probability measure µ on [0, 1) and every t ∈ [0, 1],ˆ
[0,1)

t ∧ (1− α)

1− α
µ(dα) = µ

(
[1− t, 1)

)
+ t

ˆ
[0,1−t)

1

1− α
µ(dα).

Hence, recalling ∆n(ω) < 22−K B and 2B ≤ 2K∆n(ω),∣∣∣Rρ(F̂n,θ|ω)−Rρ(Fθ)
∣∣∣

≤ sup
µ∈MB,δ

(ˆ
[0,1−21−K)

∆n(ω)− 22−KB

1− α
µ(dα) + 2B

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα)

)
≤ 2B sup

µ∈MB,δ

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα)

≤ 2K∆n(ω) sup
µ∈MB,δ

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα) for θ ∈ Θ, δ > 0. (7.6)
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Moreover, for ω ∈ Ω with 2−1∆n(ω) < 2B ≤ ∆n(ω), we have 2B ≤ ∆n(ω)/(1 − α) for
every α ∈ [0, 1). Therefore,∣∣∣Rρ(F̂n,θ|ω)−Rρ(Fθ)

∣∣∣ ≤ 2B ≤ ∆n(ω). (7.7)

Now, let ε > 0. Putting together (7.5) with (7.6) and (7.7), we may observe

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣

≤ 1Ωn0 ·∆n +
∞∑

K=1

1ΩnK
· 2K∆n sup

µ∈MB,δ

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα) (7.8)

for every δ > 0. Invoking assumption (A 5) with q ∈ [1,∞) and the constants Nq,b we
have

2K sup
µ∈MB,δ

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα) ≤ 2K Nq,(4B+δ) 2

(1−K)/q, for δ > 0, K ∈ N.

This implies

1ΩnK
· 2K∆n sup

µ∈MB,δ

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα)

≤ 1ΩnK
· 2 · 2(K−1)(q−1)/q Nq,(4B+δ) ∆n

= 1ΩnK
·Nq,(4B+δ) 2 · 2(K−1)(q−1)/q ∆(q−1)/q

n ∆1/q
n

≤ 1ΩnK
·Nq,(4B+δ) 2 · 2(K−1)(q−1)/q 2(2−K)(q−1)/q B(q−1)/q ∆1/q

n

≤ 1ΩnK
·Nq,(4B+δ) · 2(2q−1)/q B(q−1)/q ∆1/q

n for δ > 0, K ∈ N.

Since Nq,(4B+δ) ≥ 1 for δ > 0, and since ∆n ≤ 2B we may also observe

1Ωn0 ·∆n = 1Ωn0 ·∆(q−1)/q
n ∆1/q

n = 1ΩnK
· 2(q−1)/q B(q−1)/q ∆1/q

n

≤ 1Ωn0 ·Nq,(4B+δ) · 2(2q−1)/q B(q−1)/q ∆1/q
n for δ > 0.

Hence, combining (7.8) with (7.5), we end up with

P∗
({

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ε

})
≤ P∗

({
∞∑

K=0

1ΩnK
·Nq,(4B+δ) · 2(2q−1)/q B(q−1)/q ∆1/q

n ≥ ε

})

≤ P∗
({

∆n ≥ εq

N q
q,(4B+δ) · 2(2q−1) B(q−1)

})
for δ > 0. (7.9)
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Recall the at most countable subset Θ ⊆ Θ from assumption (A 3). In view of Lemma
7.2 we may further conclude from (7.9)

P∗
({

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ε

})
≤ P

({
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣ ≥ εq

N q
q,(4B+δ) · 2(2q−1) B(q−1)

})
, (7.10)

where F̂I := {[G(θ, ·)−x]+ | θ ∈ Θ, x ∈ I} for some countable dense subset I ⊆ [−B,B].
We want to apply the concentration inequality in Theorem B.1 from Appendix B to
upper estimate the deviation probabilities on the right-hand of the inequality (7.10).

For this purpose, note that the constant function 2B is a positive envelope of F̂I , and
recall from Lemma 7.2

J
(
F̂I , 2B, 1/2

)
≤ 4 J(FΘ, B, 1/8

)
+ 6.

Since in addition, the function class F̂I is at most countable, we may conclude from
Theorem 2.1 in [27]

E

[
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣] ≤ 32

√
2 B√
n

J
(
F̂I , 2B, 1/2

)
≤

128
√
2 B

[
J
(
FΘ, B, 1/8

)
+ 3/2

]
√
n

.

If t > 0 and ε > Nq,(4B+δ) · B [22q−1 128 (t+ 1)
√
2]1/q

[
J
(
FΘ, B, 1/8

)
+ 3/2

]1/q
/n1/(2q),

then

εq

N q
q,(4B+δ) · 2(2q−1) B(q−1)

=
t εq

(t+ 1) N q
q,(4B+δ) · 2(2q−1) B(q−1) +

εq

(t+ 1) N q
q,(4B+δ) · 2(2q−1) B(q−1)

>
t εq

(t+ 1) N q
q,(4B+δ) · 2(2q−1) B(q−1) + E

[
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣] for δ > 0.

Therefore in this case, by Theorem B.1 from Appendix B

P

({
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣ ≥ εq

N q
q,(4B+δ) · 2(2q−1) B(q−1)

})

≤ exp

(
− n t2 ε2q

8 (t+ 1)2 B2 N2q
q,(4B+δ) · 4(2q−1) B2(q−1)

)

≤ exp

(
− n t2 ε2q

24q+1 (t+ 1)2 B2q N2q
q,(4B+δ)

)
for δ > 0.

This completes the proof due to (7.10). 2
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7.2. Proof of Theorem 3.9

Let X1, . . . , Xn be i.i.d. Bernoulli variables with parameter p. Let Fn be the empirical
distribution function induced by X1, . . . , Xn and F the distribution function of X1. Let
ρ be a distortion risk measure with h(t) = t1/q for q ≥ 1. Then, we have that,

P
(∣∣∣Rρ(F̂n)−Rρ(F )

∣∣∣ ≥ ϵ
)
= P

∣∣∣∣∣∣
(
1

n

n∑
i=1

Xi

)1/q

− p1/q

∣∣∣∣∣∣ ≥ ϵ


≥ P

( 1

n

n∑
i=1

Xi

)1/q

− p1/q ≥ ϵ


= P

( 1

n

n∑
i=1

Xi

)1/q

≥ ϵ+ p1/q


= P

(
1

n

n∑
i=1

Xi ≥
(
ϵ+ p1/q

)q)

= P

(
n∑

i=1

Xi ≥ n
(
ϵ+ p1/q

)q)
.

Let p = ϵq. Then the above becomes

P

(
n∑

i=1

Xi ≥ n
(
ϵ+ p1/q

)q)
= P

(
n∑

i=1

Xi ≥ n(2ϵ)q

)
.

We assume 1/(2n1/q) ≤ ϵ ≤ (1− 1/n)1/q/2 ∧ 1/4. Then by Lemma 4.7.2 of [1] (see also
[17]), we have the following lower bound on the binomial distribution:

P

(
n∑

i=1

Xi ≥ n(2ϵ)q

)

≥ P

(
n∑

i=1

Xi ≥ n⌈(2ϵ)qn⌉/n

)
≥ 1√

8⌈(2ϵ)qn⌉(1− ⌈(2ϵ)qn⌉/n)
exp (−nD(⌈(2ϵ)qn⌉/n || ϵq))

≥ 1√
2q+4n

exp (−nD(⌈(2ϵ)qn⌉/n || ϵq)) , (note that ⌈(2ϵ)qn⌉ ≤ 2(2ϵ)qn),
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where

D(⌈(2ϵ)qn⌉/n || ϵq) = ⌈(2ϵ)qn⌉
n

log

(
⌈(2ϵ)qn⌉
nϵq

)
−
(
1− ⌈(2ϵ)qn⌉

n

)
log

(
1− ϵq

1− ⌈(2ϵ)qn⌉
n

)

≤ 2(2ϵ)qn

n
log

(
2(2ϵ)qn

nϵq

)
−
(
1− (2ϵ)qn

n

)
log

(
1− ϵq

1− (2ϵ)qn
n

)

= 2q+1(q + 1)ϵq log(2)− (1− (2ϵ)q) log

(
1− ϵq

1− (2ϵ)q

)
.

We note that

log

(
1− ϵq

1− (2ϵ)q

)
= log

(
1 +

1− ϵq

1− (2ϵ)q
− 1

)
= log

(
1 +

2q − 1

1− (2ϵ)q
ϵq
)

≤ log

(
1 +

2q − 1

1− 1/2q
ϵq
)

=
2q − 1

1− 1/2q
ϵq +O(ϵ2q).

Hence,

D(⌈(2ϵ)qn⌉/n || ϵq) ≤ 2q+1(q + 1)ϵq log(2)− (1− (2ϵ)q)

(
2q − 1

1− 1/2q
ϵq +O(ϵ2q)

)
=

(
2q+1(q + 1) log(2)− 2q − 1

1− 1/2q

)
ϵq +O(ϵ2q).

Hence, we have that

P

(
n∑

i=1

Xi ≥ n(2ϵ)q

)

≥ 1√
2q+3

exp

(
−n
((

2q+1(q + 1) log(2)− 2q − 1

1− 1/2q

)
ϵq(1 +O(ϵ2)) +

1

2
log(n)/n

))
≥ 1√

2q+3
exp

(
−n
(
2q+1(q + 1) log(2)− 2q − 1

1− 1/2q
+

1

2

)
ϵq(1 +O(ϵ2))

)
,

where we note that log(n)/n ≤ ϵq iff log(n) ≤ nϵq. Since nϵq ≤ n− 1, we have log(n) ≤
n− 1, which is iff 1 ≤ (n− 1)/ log(n), which holds for all n ≥ 3. 2

7.3. Proof of Theorem 3.10

We re-examine the proof of Theorem 3.4. Let {ΩnK}K≥0 be the disjoint partitions
introduced in the proof of Theorem 3.4, where ΩnK :=

{
2K−1∆n < 2B ≤ 2K∆n

}
. Using
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the fact that ρ is coherent (hence, βρ vanishing on its effective domain), we have:

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣

≤ 1Ωn0 ·∆n +
∞∑

K=1

1ΩnK
· 2K∆n sup

µ∈M,βρ(µ)=0

ˆ
[0,1)

21−K ∧ (1− α)

1− α
µ(dα)

= 1Ωn0 ·∆n +
∞∑

K=1

1ΩnK
· 2K∆n hρ(2

1−K).

For K ≥ 1, and ω ∈ ΩnK , we have that

2K∆n hρ(2
1−K) ≤ 4Bhρ(2

1−K).

For a given ϵ > 0, let Kϵ := min{K ∈ N | 4Bhρ(21−K) < ϵ}. Then, for K ≥ Kϵ, we have
that

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≤ 4Bhρ(2

1−K) < ϵ.

Hence, {
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ > ϵ

}
∩
⋃

K≥Kϵ

ΩnK = ∅.

Therefore, using hρ(t) ≤ 1,∀t ∈ [0, 1], we have

P∗
(
sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ > ϵ

)
≤ P∗

(
1Ωn0 ·∆n +

Kϵ−1∑
K=1

1ΩnK
· 2K∆n hρ(2

1−K) > ϵ

)

≤ P∗
(
1Ωn0 ·∆n +

Kϵ−1∑
K=1

1ΩnK
· 2K∆n > ϵ

)

≤
Kϵ−1∑
K=0

P∗
(
∆n >

ϵ

2K

)
.

Now, following the same arguments as in the proof of Theorem 3.4, we may use Lemma
7.2 to obtain the further estimation:

P∗
({

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ε

})
≤

Kε−1∑
K=0

P

({
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣ ≥ ε

2K

})
, (7.11)

where F̂I := {[G(θ, ·)−x]+ | θ ∈ Θ, x ∈ I} for some countable dense subset I ⊆ [−B,B].
To apply the concentration inequality in Theorem B.1, we note that the constant function
2B is a positive envelope of F̂I , and recall from Lemma 7.2

J
(
F̂I , 2B, 1/2

)
≤ 4 J(FΘ, B, 1/8

)
+ 6.
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Since in addition, the function class F̂I is at most countable, we may conclude from
Theorem 2.1 in [27]

E

[
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣] ≤ 32

√
2 B√
n

J
(
F̂I , 2B, 1/2

)
≤

128
√
2 B

[
J
(
FΘ, B, 1/8

)
+ 3/2

]
√
n

.

If t > 0 and ε > 2Kε−1 128 (t + 1)
√
2 B

[
J
(
FΘ, B, 1/8

)
+ 3/2

]
/
√
n, then for arbitrary

K ∈ {0, . . . , Kε − 1},

ε

2K
=

t ε

(t+ 1) 2K
+

ε

(t+ 1) 2K
>

t ε

(t+ 1) 2K
+ E

[
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣] .

Therefore in this case, by Theorem B.1 from Appendix B

P

({
sup
f∈F̂I

∣∣(Pn − P)(f)
∣∣ ≥ ε

2K

})
≤ exp

(
− n t2 ε2

2 4K+1 (t+ 1)2 B2

)
,

for K ∈ {0, . . . , Kε − 1}. Therefore,

P∗
({

sup
θ∈Θ

∣∣∣Rρ(F̂n,θ)−Rρ(Fθ)
∣∣∣ ≥ ε

})
≤

Kε−1∑
k=0

exp

(
− n t2 ε2

2 4k+1 (t+ 1)2 B2

)

≤
Kε−1∑
k=0

ˆ k+1

k

exp

(
− n t2 ε2

4u 8 (t+ 1)2 B2

)
du

=

ˆ Kϵ

0

exp

(
− n t2 ε2

4u 8 (t+ 1)2 B2

)
du.

Invoking the change of variable formula, we may further proceed

ˆ Kϵ

0

exp

(
− n t2 ε2

4u 8 (t+ 1)2 B2

)
du

≤
ˆ 1

4−Kϵ

exp

(
−y n t2 ε2

8 (t+ 1)2 B2

)
1

y ln(4)
dy

≤ 4Kε

ln(4)

ˆ 1

4−Kε

exp

(
−y n t2 ε2

8 (t+ 1)2 B2

)
dy

≤ 1

2304 t2 ln(4)
exp

(
− n t2 ε2

8 4Kε (t+ 1)2 B2

)
,

where in the last step the assumption ε > 2Kε−1 128 (t + 1)
√
2 B

[
J
(
FΘ, B, 1/8

)
+

3/2
]
/
√
n has been taken into account. The proof is now complete.
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7.4. Auxiliary Lemma for Proofs of Theorems 3.4, 3.10 and 5.1

The following lemma is repeatedly used in proofs of Theorems 3.4, 3.10, and 5.1. In
Theorems 3.4 and 3.10, the goal functions are assumed to be uniformly bounded by some
B ∈ R, whereas in Theorem 5.1, goal functions are allowed to have unbounded support.
Therefore, to state the following lemma for both the bounded and unbounded cases, we
adopt the following rules for interpreting the notations ϕr,n and wr,n. Namely, for the
proofs of Theorems 3.4 and 3.10, Lemma 7.2 is applied with wr,n = B and ϕr,n(x) = x,
whereas for the proof of Theorem 5.1, Lemma 7.2 is applied with wr,n = (2n)1/r∥ξ∥PZ ,r

and ϕr,n(x) = (x ∧ wr,n) ∨ (−wr,n). Moreover, we denote the function class

FΘ,ϕr,n
wr,n

:=
{[
ϕr,n

(
G(θ, ·)

)
− x
]+ | θ ∈ Θ, x ∈ [−wr,n, wr,n]

}
.

Lemma 7.2 Let (A 1) - (A 3) be fulfilled. Furthermore, let Θ be the at most countable

subset of Θ from (A 3). Then for any n ∈ N, the function class FΘ,ϕr,n
wr,n satisfies the

following properties.

1) For countable dense subset I of [−wr,n, wr,n].

sup
f∈FΘ,ϕr,n

wr,n

∣∣(Pn − P)(f)
∣∣ = sup

(θ,x)∈Θ×I

∣∣∣(Pn − P)
((
ϕr,n/ ◦G(θ, ·)− x

)+)∣∣∣ P− a.s..

2) If I is some countable dense subset of [−wr,n, wr,n], then a positive envelope of

Fr,n

I :=
{(
ϕr,n ◦G(θ, ·)− x

)+ | θ ∈ Θ, x ∈ I
}
is given by ξ + wr,n, and

J(Fr,n

I , ξ + wr,n, δ) ≤ 4 J(FΘ, ξ, δ/4) + 6 for δ ∈ (0, 4].

Proof Statement 1) follows immediately from assumption (A 3) along with the conti-
nuity of ϕr,n because∣∣(ϕr,n ◦G(θ, z)− x

)+ −
(
ϕr,n ◦G(ϑ, z)− y

)+∣∣
≤ |ϕr,n ◦G(θ, z)− ϕr,n ◦G(ϑ, z)|+ |x− y|
≤ |G(θ, z)−G(ϑ, z)|+ |x− y|, for θ, ϑ ∈ Θ and x, y ∈ R.

Concerning statement 2), let I be any countable dense subset of [−wr,n, wr,n]. Condition
(A 2) ensures that ξ+wr,n is a positive envelope of the function class Fr,n

I defined in the
display of statement 2).

For θ ∈ Θ, x ∈ R, we set F (θ, x, ·) :=
(
G(θ, ·) − x

)+
, so that by definition the class

Fr,n

I consists of all functions F (θ, x, ·) with (θ, x) ∈ Θ× I. In the next step, we want to
derive upper estimates for the uniform entropy integrals J

(
Fr,n

I , ξ + wr,n, δ
)
. Therefore,

let us fix η > 0 and Q ∈ Mfin with support supp(Q). Consider any (θ, x), (ϑ, y) ∈ Θ× I
such that the inequalities ∥G(θ, ·)−G(ϑ, ·)∥Q,2 ≤ η ∥ξ∥PZ ,2/2 and |x− y| ≤ η wr,n/2 are
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valid. Since ϕr,n is 1-Lipschitz continuous, then

∥F (θ, x, ·)− F (ϑ, y, ·)∥2Q,2 =
∑

z∈supp(Q)

Q({z}) |F (θ, x, z)− F (ϑ, y, z)|2

≤ 4
∑

z∈supp(Q)

Q({z})
[
|G(θ, z)−G(ϑ, z)|2 + |x− y|2

]
≤ 4 ∥G(θ, ·)−G(ϑ, ·)∥2Q,2 + 4 |x− y|2

≤ η2 ∥ξ + wr,n∥2Q,2.

Hence, setting FΘ := {G(θ, ·) | θ ∈ Θ},

N
(
η∥ξ + wr,n∥Q,2,F

r,n
, L2(Q)

)
≤ N

(
η∥ξ∥Q,2/2,FΘ, L2(Q)

)
·N
(
η wr,n/2, I, | · |

)
≤ N

(
η∥ξ∥Q,2/4,FΘ, L2(Q)

)
·N
(
η wr,n/4, [−wr,n, wr,n], | · |

)
,

where for nonvoid bounded J ⊆ R and η > 0, we denote by N
(
η, J, | · |

)
the minimal

number to cover J by intervals of the form [x− η, x+ η] with x ∈ J . Note that

N
(
η wr,n/4, [−wr,n, wr,n], | · |

)
≤ 8/η,

holds. Then using change of variable formula we may conclude for any δ ∈ (0, 4]

J(Fr,n

I , ξ + (wr,n +B), δ)

=

ˆ δ

0

sup
Q∈Mfin

√
log
(
2 N(η ∥ξ + (wr,n +B)∥Q,F

r,n

I , L2(Q)
)
dη

≤
ˆ δ

0

sup
Q∈Mfin

√
log (2N(η∥ξ∥Q,2/4,FΘ, L2(Q)) + log(8/η)dη

≤
ˆ δ

0

sup
Q∈Mfin

√
log (2N(η∥ξ∥Q,2/4,FΘ, L2(Q))dη +

ˆ δ

0

√
log(8/η)dη

= 4 J(FΘ, ξ, δ/4) + 4

ˆ δ/4

0

√
log(2/u) du.

Furthermore, we may use a change of variable formula along with integration by parts
to obtain

ˆ δ/4

0

√
log(2/ϵ)dϵ ≤

ˆ 1

0

√
log(e/ϵ)dϵ =

ˆ ∞
0

√
1 + te−tdt

≤
ˆ ∞
0

(1 + t/2)e−tdt = 3/2.

This shows statement 2) and completes the proof. 2
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7.5. Proofs of Results from Section 4

We start with the derivation of Lemma 4.1.

Proof of Lemma 4.1 By definition, we have

ρh(X) =

ˆ ∞
0

h (P[X > t]) dt+

ˆ 0

−∞
(h (P[X > t])− 1) dt.

Let F← be the quantile function of X, and p0 the separation point between concave and
convex part of h. We note that for any t > F←(1 − p0), we have that P(X > t) ≤ p0.
Suppose first that F←(1− p0) ≥ 0. Then, we have that,ˆ ∞

0

h (P[X > t]) dt

=

ˆ F←(1−p0)

0

h (P[X > t]) dt+

ˆ ∞
F←(1−p0)

h (P[X > t]) dt

=

ˆ F←(1−p0)

0

1− h̄ (P[X ≤ t]) dt+

ˆ ∞
F←(1−p0)

h0 (P[X > t]) dt

=

ˆ F←(1−p0)

0

1− h(p0)− h̄ (P[X ≤ t]) dt+

ˆ ∞
0

h0 (P[X > t]) dt.

We also note that t ≥ −F←(1− p0) ⇔ P(−X ≥ t) ≤ 1− p0. Hence, the first integral is
also equal to: ˆ F←(1−p0)

0

1− h(p0)− h̄ (P[−X ≥ −t]) dt

=

ˆ 0

−F←(1−p0)
1− h(p0)− h̄ (P[−X ≥ s]) ds

=

ˆ 0

−∞
1− h(p0)− h̄0 (P[−X ≥ s]) ds

=

ˆ 0

−∞
1− h(p0)− h̄0 (P[−X > s]) ds.

Furthermore, we haveˆ 0

−∞
(h (P[X > t])− 1) dt = −

ˆ 0

−∞
h̄(P(X ≤ t))dt

= −
ˆ ∞
0

h̄(P(−X ≥ s))ds

= −
ˆ ∞
0

h̄0(P(−X > s))ds.

Moreover, ˆ 0

−∞
h0(P(X > t))− h(p0)dt = 0,
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since for t ≤ F←(1 − p0), h0(P(X > t)) = h(p0). Therefore, assembling all equalities
yields that

ρh(X) =

ˆ ∞
0

h0 (P[X > t]) dt+

ˆ 0

−∞
h0(P(X > t))− h(p0)dt

−
(ˆ ∞

0

h̄0(P(−X > s))ds+

ˆ 0

−∞
h̄0 (P[−X > s])− (1− h(p0))ds

)
= h(p0)ρh0/h(p0)(X)− (1− h(p0))ρh̄0/(1−h(p0))(−X).

Now, suppose F←(1− p0) < 0. Then,

ˆ 0

−∞
(h (P[X > t])− 1) dt

=

ˆ F←(1−p0)

−∞
(h (P[X > t])− 1) dt+

ˆ 0

F←(1−p0)
(h (P[X > t])− 1) dt

= −
ˆ F←(1−p0)

−∞
h̄ (P[X ≤ t]) dt+

ˆ 0

F←(1−p0)
(h0 (P[X > t])− 1) dt

= −
ˆ ∞
−F←(1−p0)

h̄0 (P[−X ≥ s]) ds+

ˆ 0

F←(1−p0)
(h0 (P[X > t])− 1) dt.

We note that ˆ ∞
−F←(1−p0)

h̄0 (P[−X ≥ s]) ds

=

ˆ ∞
0

h̄0 (P[−X ≥ s]) ds+ (1− h(p0))F
←(1− p0),

and ˆ 0

F←(1−p0)
(h0 (P[X > t])− 1) dt

=

ˆ 0

−∞
(h0 (P[X > t])− h(p0)) dt+ (1− h(p0))F

←(1− p0).

Hence,

ˆ 0

−∞
(h (P[X > t])− 1) dt

=

ˆ 0

−∞
(h0 (P[X > t])− h(p0)) dt−

ˆ ∞
0

h̄0 (P[−X ≥ s]) ds.

Moreover,
ˆ ∞
0

h(P(X > t))dt =

ˆ ∞
0

h0(P(X > t))dt,
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and ˆ 0

−∞
h̄0(P(−X > s))− (1− h(p0))ds = 0.

Hence, we again have

ρh(X) =

ˆ ∞
0

h0(P(X > t))dt+

ˆ 0

−∞
(h0 (P[X > t])− h(p0)) dt

−
ˆ ∞
0

h̄0 (P[−X ≥ s]) ds−
ˆ 0

−∞
h̄0(P(−X > s))− (1− h(p0))ds.

2

Let us turn over to the proof of Theorem 4.2

Proof of Theorem 4.2 Let θ ∈ Θ and F−θ , F̂
−
n,θ denote respectively the true and

empirical distribution functions of −G(θ, Z). Then, we have that

P
(
sup
θ∈Θ

∣∣∣ρh(F̂n,θ)− ρh(Fθ)
∣∣∣ > ϵ

)
≤ P

(
sup
θ∈Θ

∣∣∣ρhcc(F̂n,θ)− ρhcc(Fθ)
∣∣∣ ≥ ϵ/(2h(p0))

)
+ P

(
sup
θ∈Θ

∣∣∣ρhcv(F̂
−
n,θ)− ρhcv(F

−
θ )
∣∣∣ ≥ ϵ/(2(1− h(p0)))

)
.

Note that the class {−G(θ, Z) : θ ∈ Θ} is also uniformly bounded by B and has the
same covering numbers as the class FΘ. Hence, applying Theorem 5.1 to each separate
term gives the statement. 2

7.6. Proof of Theorem 5.1

To begin the proof, let us first introduce the following notation:

L(n, q, r, δ) :=

(
q

r (2n)(r−q)/r

)1/q

2 (3M
ξ

r,q + δ) ∥ξ∥PZ ,r (δ > 0). (7.12)

The following proposition allows us to reduce the unbounded problem to a bounded one.

Proposition 7.3 If r ∈ [2,∞) ∩ (q,∞), then the inequalities

P
({∣∣ inf

θ∈Θ
Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣ ≥ ε
}

∩ Bξ
n,r

)
≤ P∗

({
sup
θ∈Θ

∣∣Rρ

(
F̂n,θ

)
−Rρ

(
Fθ

)∣∣ ≥ ε
}

∩ Bξ
n,r

)
≤ P∗

({
sup
θ∈Θ

∣∣Rρ

(
F̂

ϕr,n

n,θ

)
−Rρ

(
F

ϕr,n

θ

)∣∣ ≥ ϵ− L(n, r, q, δ)
}

∩ Bξ
n,r

)
hold for any δ, ε > 0 and every n ∈ N. Here P∗ denotes the outer probability w.r.t. P.

34



The proof is relegated to Section 7.7.

In the next step, we want to bound the penalty function in Kusuoka representation
(2.3) for Rρ(F̂

ϕr,n

n,θ ) and Rρ(F
r,n
θ ) on the auxiliary event Bξ

n,r.

Proposition 7.4 Under assumptions (A 1), (A 2) and (A 6) with q, r as well as M
ξ

q,r

as in (A 6), we obtain the following Kusuoka representation for θ ∈ Θ, n ∈ N and δ > 0:

Rρ(F̂
ϕr,n

n,θ|ω) = sup
µ∈dom(βρ)

βρ(µ)≤2M
ξ
r,q+δ

( ˆ
[0,1)

Rα(F̂
ϕ,r
n,θ|ω) µ(dα)− βρ(µ)

)
if ω ∈ Bξ

n,r,

Rρ(F
ϕr,n

θ ) = sup
µ∈dom(βρ)

βρ(µ)≤2M
ξ
r,q+δ

(ˆ
[0,1)

Rα(F
ϕr,n

θ ) µ(dα)− βρ(µ)
)
,

where Rα stands for the functional associated with AV@Rα.

Proof Let θ ∈ Θ, n ∈ N and δ > 0. We fix any ω ∈ Bξ
n,r and denote by F̂n,ξ(·, ω) the

empirical distribution function based on ξ
(
Z1(ω)), . . . , ξ

(
Zn(ω)

)
.

Since (Ω,F ,P) is atomless, we may find random variablesX(ω), Y (ω) on (Ω,F ,P) which
have respectively F̂n,ξ(·, ω) and F̂ ϕr,n

n,θ|ω as distribution functions. Both random variables
are P-essentially bounded so that they belong to X . Furthermore, the distribution
functions F−X(ω) , FY (ω) , FX(ω) of −X(ω), Y (ω) and X(ω) respectively, satisfy pointwise the
inequalities FX(ω) ≤ FY (ω) ≤ F−X(ω) due to (A 2). Moreover, by (A 2) again, we also
have −ξ(Z1) ≤ ϕr,n(G(θ, Z1)) ≤ ξ(Z1). Hence, by Proposition A.2 (see Appendix A)

Rρ(F̂
ϕr,n

n,θ|ω) = sup
µ∈dom(βρ)

βρ(µ)≤2ρ(2X(ω))+δ

(ˆ
[0,1)

Rα(F̂
ϕr,n

n,θ|ω) µ(dα)− βρ(µ)
)

if ω ∈ Bξ
n,r,

Rρ(F
ϕr,n

θ ) = sup
µ∈dom(βρ)

βρ(µ)≤2ρ(2ξ(Z1))+δ

(ˆ
[0,1)

Rα(Fθ) µ(dα)− βρ(µ)
)
,

Furthermore, by Lemma 4.3 in [2], and recalling r ≥ q as well as ω ∈ Bξ
n,r

AV@Rα(2X
(ω)) ≤

2
(

1
n

∑n
j=1 ξj

(
Zj(ω)

)q)1/q
(1− α)1/q

≤
2
(

1
n

∑n
j=1 ξj

(
Zj(ω)

)r)1/r
(1− α)1/q

≤
21+1/r∥ξ∥PZ ,r

(1− α)1/q
.

Also, by Lemma 4.3 in [2]

AV@Rα(2ξ) ≤
∥ξ∥PZ ,q

(1− α)1/q
≤

∥ξ∥PZ ,r

(1− α)1/q
.

So we may conclude 2ρ(2X(ω)) ∨ 2ρ(2ξ) ≤ 2M
ξ

r,q which completes the proof. 2
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Now we are ready to show Theorem 5.1.

Proof of Theorem 5.1. Let us fix n ∈ N and δ, ε > 0, and let I be any countable dense
subset of [−wr,n, wr,n], whereas Θ is the at most countable subset of Θ from assumption
(A 3).

The mapping infθ∈Θ Rρ(F̂n,θ) − infθ∈ΘRρ(Fθ) is a random variable on (Ω,F ,P) due
to Lemma 7.1. Clearly, the inequality

P
({∣∣∣ inf

θ∈Θ
Rρ(Fθ)− inf

θ∈Θ
Rρ(F̂n,θ)

∣∣∣ ≥ ε
})

≤ P∗
({

sup
θ∈Θ

∣∣∣Rρ(Fθ)−Rρ(F̂n,θ)
∣∣∣ ≥ ε

})
is valid. Denote br,δ := 2M

ξ

r.q+δ and Mbr,δ := {µ ∈ M | βρ(µ) ≤ br,δ}. Then, combining
Proposition 7.3, Lemma 7.2 and mimicking the proof of Theorem 3.4 (by replacing MB,δ

with Mbr,δ and Nq,4B+δ with Nq,br,δ (which is finite due to (A 6)), we have that

P∗
({

sup
θ∈Θ

∣∣∣Rρ(Fθ)−Rρ(F̂n,θ)
∣∣∣ ≥ ε

}
∩Bξ

n,r

)
≤ P∗

({
sup
θ∈Θ

∣∣Rρ

(
F̂

ϕr,n

n,θ

)
−Rρ

(
F

ϕr,n

θ

)∣∣ ≥ ϵ− L(n, r, q, δ)
}

∩ Bξ
n,r

)
≤ P∗

({
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣ ≥ [ε− L(n, q, r, δ)]q

N q
q,br,δ

22q−1w
(q−1)
r,n

})
, (7.13)

where Fr,n

I :=
{(
ϕr,n ◦G(θ, ·)− x)+ | (θ, x) ∈ Θ× I

}
, and L(n, q, r, δ) is as in (7.12). To

find upper estimations for the deviation probability on the right-hand side of inequality
(7.13), we want to apply Theorem B.1 in Appendix B to F

r,n

I .

Firstly, every member of this class is Borel measurable, and ξ + wr,n is a positive
envelope. Since in addition F

r,n

I is at most countable, we may apply Theorem 2.1 from
[27] to conclude

E

[
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣] ≤

16
√
2 ∥ξ∥PZ ,2√
n

J
(
Fr,n

I , ξ + wr,n, 1/2
)
.

Therefore by Lemma 7.2

E

[
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣] ≤

64
√
2 ∥ξ∥PZ ,2√
n

[
J
(
FΘ, ξ, 1/8

)
+ 3/2

]
. (7.14)

For abbreviation, we set

ε :=
ε

Nq,br,δ2
(2q−1)/qw

(q−1)/q
r,n

L :=
L(n, q, r, δ)

Nq,br,δ2
(2q−1)/qw

(q−1)/q
r,n
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Now, if ε satisfies the lower bound in the statement, then inequality (7.14) implies

(ε− L)q >
εq

2q
∨ E

[
(t+ 1) sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣] .

Hence

(ε− L)q =
t

t+ 1
(ε− L)q +

(ε− L)q

t+ 1
>

t

t+ 1

εq

2q
+ E

[
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣]

Finally, note that the mappings from Fr,n

I are uniformly bounded by wr,n. Thus, applying
Theorem B.1 (see Appendix B) to Fr,n

I , we may derive from (7.13)

P
({

sup
θ∈Θ

∣∣∣Rρ(Fθ)−Rρ(F̂n,θ)
∣∣∣ ≥ ε

}
∩Bξ

n,r

)
≤ P

({
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣ ≥ (ε− L)q

})

≤ P

({
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣ ≥ t

t+ 1

εq

2q
+ E

[
sup

f∈Fr,n
I

∣∣(Pn − P)(f)
∣∣]})

≤ exp

(
− n t2 ε2q

22q+1 (t+ 1)2w2
r,n

)
.

2

7.7. Proof of Proposition 7.3

The starting point is the following auxiliary result.

Lemma 7.5 Let ξ from (A 2) be PZ-integrable of order r for some r ≥ 2. Then,{∣∣ inf
θ∈Θ

Rρ

(
F̂n,θ

)
− inf

θ∈Θ
Rρ

(
Fθ

)∣∣ ≥ ϵ
}

∩ Bξ
n,r

⊆
{
sup
θ∈Θ

∣∣Rρ

(
F̂n,θ

)
−Rρ

(
Fθ

)∣∣ ≥ ϵ
}

∩ Bξ
n,r

⊆
{
sup
θ∈Θ

∣∣Rρ

(
F̂

ϕr,n

n,θ

)
−Rρ

(
F

ϕr,n

θ

)∣∣+ sup
θ∈Θ

∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣ ≥ ϵ
}

∩ Bξ
n,r,

for ϵ > 0 and n ∈ N.

Proof This follows from the fact that on Bξ
n,r, we have that

ξ(Zj)
r

n
≤ 1

n

n∑
j=1

ξ(Zj)
r ≤ 2E[ξ(Z1)

r],
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which implies that ξ(Zj) ≤ (2n)1/r∥ξ∥PZ ,r. In particular, this means that F̂
ϕr,n

n,θ = F̂n,θ

on the event Bξ
n,r. 2

It remains to provide an upper estimation for

sup
θ∈Θ

∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣, (n ∈ N).

Proposition 7.6 Let (A 1), (A 2) be fulfilled with ξ from (A 2), and let r, q ∈ [1,∞)

and M
ξ

r,q be as in (A 6). If r ∈ [2,∞) ∩ (q,∞), then

sup
θ∈Θ

∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣ ≤ L(n, r, q, δ), for δ > 0, n ∈ N.

Proof Let n ∈ N and fix δ > 0. We note that the following inequalities

−ξ(z) ≤ G(θ, z), ϕr,n

(
G(θ, z)

)
≤ ξ(z),

are valid for θ ∈ Θ and z ∈ Rd. Hence, by Proposition A.2 in Appendix A,∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣
≤ sup

µ∈dom(β)
βρ(µ)≤bδ

ˆ
[0,1)

∣∣∣AV@Rα

(
ϕr,n

(
G(θ, Z1)

))
− AV@Rα

(
G(θ, Z1)

)∣∣∣ µ(dα), for θ ∈ Θ,

where bδ := 2ρ
(
2ξ(Z1)

)
+ δ. Furthermore, by monotonicity and subadditivity of the

Average Value at Risk, we obtain∣∣∣AV@Rα

(
ϕr,n

(
G(θ, Z1)

))
− AV@Rα

(
G(θ, Z1)

)∣∣∣
≤ AV@Rα

(∣∣∣ϕr,n

(
G(θ, Z1)

)
−G(θ, Z1)

∣∣∣)
= AV@Rα

((
G(θ, Z1) + wr,n

)−
+
(
G(θ, Z1)− wr,n

)+)
≤ AV@Rα

(
2
(
ξ(Z1)− wr,n

)+)
,

for α ∈ [0, 1). In addition, 2
(
ξ(Z1)− wr,n

)+
is integrable of order q < r by assumption

on ξ, so that by the proof of Lemma 4.3 in [2]

AV@Rα

(
2
(
ξ(Z1)− wr,n

)+) ≤
2
∥∥(ξ(Z1)− wr,n

)+∥∥
PZ ,q(

1− α
)1/q , for α ∈ [0, 1).

Therefore, we may conclude

sup
θ∈Θ

∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣
≤ sup

µ∈dom(βρ)

βρ(µ)≤bδ+δ

ˆ
[0,1)

2
∥∥(ξ(Z1)− wr,n

)+∥∥
PZ ,q(

1− α
)1/q µ(dα). (7.15)
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Since ξ is PZ-integrable of order r > q, and using in the first step the change of variable
formula, we may further observe∥∥(ξ − wr,n

)+∥∥q
PZ ,q

= q

ˆ ∞
wr,n

(y − wr,n)
q−1 P

({
ξ(Z1) > y

})
dy

=
q

wr−q
r,n

ˆ ∞
wr,n

wr−q
r,n (y − wr,n)

q−1 P
({
ξ(Z1) > y

})
dy

≤ q

wr−q
r,n

ˆ ∞
wr,n

yr−1 P
({
ξ(Z1) > y

})
dy

≤ q

r wr−q
r,n

∥ξ∥rPZ ,r =
q

r (2n)(r−q)/r
∥ξ∥qPZ ,r

. (7.16)

Finally,

ˆ
[0,1)

1

(1− α)1/q
µ(dα) ≤

ˆ
[0,1)

(4∥ξ∥PZ ,q) ∨ 1

(1− α)1/q
µ(dα) ≤M

ξ

r,q + β(µ), for µ ∈ dom(β).

Hence,

sup
µ∈dom(βρ)

βρ(µ)≤bδ+δ

ˆ
[0,1)

1(
1− α

)1/qµ(dα) ≤ 3M
ξ

r,q + δ.

Now, the statement of Proposition 7.6 may be concluded easily from (7.15) along with
(7.16). 2

Now, Proposition 7.3 is an immediate consequence of Lemma 7.5 together with Propo-
sition 7.6. 2

7.8. Details About Remark 5.2

If ρ is coherent, then (A 6) in Proposition 7.6 may be replaced by (A 4). In the proof of
Proposition 7.6, one can take bδ = 0, and do the following estimation. Since AV@Rα is
also a distortion risk measure with h(p) = min{p/(1− α), 1}, we have

AV@Rα

(
2
(
ξ(Z1)− wr,n

)+)
= 2

ˆ ∞
wr,n

(1− Fξ(y)) ∧ (1− α)

1− α
dy,

39



where Fξ(y) is the distribution function of ξ. Then, we have

sup
θ∈Θ

∣∣Rρ

(
F

ϕr,n

θ

)
−Rρ

(
Fθ

)∣∣
≤ sup

µ∈dom(β)
βρ(µ)≤0

ˆ
[0,1)

2

ˆ ∞
wr,n

(1− Fξ(y)) ∧ (1− α)

1− α
dy µ(dα)

= sup
µ∈dom(β)
βρ(µ)≤0

2

ˆ ∞
wr,n

ˆ
[0,1)

(1− Fξ(y)) ∧ (1− α)

1− α
dy µ(dα)

≤ 2

ˆ ∞
wr,n

(1− Fξ(y))
1/qN qdy

≤ 2N q

ˆ ∞
wr,n

E[ξ(Z1)
r]1/qy−r/qdy

= 2N q∥ξ∥r/qPZ ,r

q

r − q
w(q−r)/q

r,n

= 22−r/qN q∥ξ∥PZ ,r

q

r − q

1

n1/q−1/r

=: L̃(n, r, q, δ).

Then, the remaining proof of Theorem 5.1 for the coherent version can be replicated by
replacing L(n, r, q, δ) with L̃(n, r, q, δ).

8. Additional Details for Distortion Functions

8.1. Some Details on Table 1

• If h(p) = (1− (1− p)k)1/k, then

lim
p↓0

h(p)

p1/k
= lim

p↓0

(
1− (1− p)k

p

)1/k

=

(
lim
p↓0

1− (1− p)k

p

)1/k

= k1/k.

Hence, N q < ∞ for q ≥ k. Moreover, N q ≤ k1/k, for q ≥ k, since Nk = k1/k,

due to the fact that 1−(1−p)k
p

is decreasing in p (since it is the slope of the concave

function h(p) = 1− (1− p)k between [0, p]).

• If h(p) = pa(1− log(pa)) for a ∈ (0, 1), then limp↓0 p
a−1/q(1− log(pa)) < ∞ if and
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only if q > 1/a. To calculate N q, we examine the first order condition:

d

dp
pa−1/q(1− log(pa)) = 0

pa−1/q−1(a− 1/q)(1− log(pa))− apa−1/qp−a+a−1 = 0

1− a

a− 1/q
= a log(p)

p = exp

(
−1

a2q − a

)
.

Hence,

N q = exp

(
−a+ 1/q

a2q − a

)(
1 +

1

aq − 1

)
= exp

(
−a+ 1/q

a2q − a

)(
aq

aq − 1

)
.

8.2. Extra Details on Kahneman-Tversky’s Distortion Function

Recall the Kahneman-Tversky’s function

h(p) = 1− (1− p)β

((1− p)β + pβ)1/β
, 0 < β < 1.

Its dual function is given by

h̄(p) =
pβ

(pβ + (1− p)β)1/β
, 0 < β < 1.

To show N1/β,hcv <∞, it is sufficient to notice that

lim
p↓0

h̄(p)

pβ
= lim

p↓0

1

(pβ + (1− p)β)1/β
= 1.

Now, to show N1/β,hcc <∞, we need to show limp↓0 h(p)/p
β <∞. This is equal to

lim
p↓0

1− (1−p)β

((1−p)β+pβ)
1/β

pβ
= lim

p↓0

(
(1− p)β + pβ

)1/β − (1− p)β

pβ
· 1

((1− p)β + pβ)1/β

= lim
p↓0

(
(1− p)β + pβ

)1/β − (1− p)β

pβ
· lim
p↓0

1

((1− p)β + pβ)1/β

= lim
p↓0

(
(1− p)β + pβ

)1/β − (1− p)β

pβ
,
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provided the last limit exists. Hence, to examine it, we use L’Hopital’s rule and differ-
entiate both the numerator and the denominator. This gives

lim
p↓0

1
β

(
(1− p)β + pβ

)1/β−1 (
βpβ−1 − β(1− p)β−1

)
+ β(1− p)β−1

βpβ−1

= lim
p↓0

1

β

(
(1− p)β + pβ

)1/β−1 (
1− (1− p)β−1p1−β

)
+ (1− p)β−1p1−β

=
1

β
.

Appendix

A. Kusuoka representation

Let ρ : X → R be the law-invariant convex risk measure on the R-vector space X as
introduced in Section 2. Furthermore, let βρ be the function on the set M

(
[0, 1)

)
of all

Borel probability measures on [0, 1) which has been introduced by (2.4). We want to
verify the Kusuoka representation (2.3) for ρ.

Proposition A.1 If ρ satisfies the Lebesgue property, then under the assumptions on
X made in Section 2, then

ρ(X) = sup
µ∈M([0,1))

(ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

)
,

holds for every X ∈ X . Moreover, if ρ is coherent, then βρ(µ) = 0 for any µ from the
effective domain of βρ.

Proof First of all, βρ vanishes on its effective domain if ρ is coherent due to positive
homogeneity.

Since ρ fulfills the Lebesgue property, its restriction to L∞(Ω,F ,P) satisfies the fol-
lowing property

ρ(Xk) ↗ ρ(X) whenever Xk ↗ X and Xk, X ∈ L∞(Ω,F ,P). (A.1)

Under this property, we may draw on Theorem 4.62 from [18] to conclude

ρ(X) = sup
µ∈M([0,1))

(ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

)
for X ∈ L∞(Ω,F ,P). (A.2)

Denoting the effective domain of βρ by dom(βρ), we may introduce via

ρ(X) = sup
µ∈dom(βρ)

(ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

)
,
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the mapping ρ : X → R ∪ {∞}. Recall that the mappings from X are assumed to be
P-integrable. We have

|AV@Rα(X)| ≤ AV@Rα(|X|), for α ∈ (0, 1) and X ∈ X , (A.3)

because the Average Value at Risk satisfies monotonicity and sublinearity. Furthermore,
the Average Value at Risk is continuous w.r.t. the L1-norm (see [37, Proposition 3.1]).
This means

lim
k→∞

AV@Rα(|X| ∧ k) = AV@Rα(|X|), for α ∈ (0, 1), X ∈ X . (A.4)

Combining (A.3) and (A.4), we may conclude by monotone convergence that

ˆ
[0,1)

|AV@Rα(X)| µ(dα)− βρ(µ)

= |E[X]| µ({0}) +
ˆ
(0,1)

|AV@Rα(X)| µ(dα)− βρ(µ)

≤ E[|X|] µ({0}) +
ˆ
(0,1)

AV@Rα(|X|) µ(dα)− βρ(µ)

= lim
k→∞

(
E[|X| ∧ k]] +

ˆ
(0,1)

AV@Rα(|X| ∧ k) µ(dα)− βρ(µ)

)
.

holds for any µ ∈ dom(β) and every X ∈ X . Moreover, as a law-invariant convex
risk measure on a Banach lattice, ρ is norm-continuous (e.g., [37, Proposition 3.1]), and∥∥|X| − |X| ∧ k

∥∥
X → 0 for k → ∞, if X ∈ X due to (2.1). Hence, in view of (A.2), we

end up with

|E[X] µ({0})|+
ˆ
(0,1)

|AV@Rα(X)| µ(dα)− βρ(µ) ≤ lim
k→∞

ρ(|X| ∧ k) = ρ(|X|),

for µ ∈ dom(β) and X ∈ X . In particular,

ρ(X) ≤ ρ(|X|) <∞, for X ∈ X .

Then ρ may be verified easily as a law-invariant convex risk measure so that it is also
continuous w.r.t. ∥ · ∥X . Since ρ and ρ coincide on L∞(Ω,F ,P) by (A.2), and since
L∞(Ω,F ,P) is a dense subset of X w.r.t. ∥ · ∥X by (2.1), the norm continuity of both
mappings yields that they also coincide on the entire space X . This completes the proof.

2

For any X ∈ X , we denote its distribution function by FX . If we restrict ρ to subsets
{X ∈ X | FY ≤ FX ≤ F−Y pointwise} for some nonnegative Y ∈ X , we may bound the
penalty function βρ in the Kusuoka representation.
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Proposition A.2 Let Y ∈ X with Y ≥ 0 P-a.s.. Then, with the Kusuoka representation
from Proposition A.1, we may find some b ∈ R such that

ρ(X) = sup
µ∈dom(βρ)

βρ(µ)≤b+δ

(ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

)
,

holds for any δ > 0, and arbitrary X ∈ X satisfying FY ≤ FX ≤ F−Y pointwise. Here
dom(β) denotes the effective domain of β. Sufficient choices are b = ρ(2 Y )− 2 ρ(−Y )
or b = 2ρ(2Y )− 3ρ(0).

Proof Fix δ > 0 and X ∈ X with FY ≤ FX ≤ F−Y pointwise. This implies F2Y ≤ F2X .
We shall denote the expectation by AV@R0. In view of the Kusuoka representation
derived in Proposition A.1, we may restrict the supremum to all µ ∈ M such that

ρ(X)− δ/2 <

ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ).

Then, by positive homogeneity of the expectation and Average Value at Risk along with
the Kusuoka representation from Proposition A,

βρ(µ)− δ/2

<

[ˆ
[0,1)

AV@Rα(2X) µ(dα)− βρ(µ)

]
− ρ(X)−

[ˆ
[0,1)

AV@Rα(X) µ(dα)− βρ(µ)

]
≤ ρ(2X)− ρ(X)− ρ(X) + δ/2 = ρ(2X)− 2ρ(X) + δ/2.

Since the expectation as well as the Average Value at Risk are monotone, ρ satisfies
this property as well by the Kusuoka representation. This means, in particular, that
ρ(−Y ) ≤ ρ(X) due to FX ≤ F−Y pointwise, and AV@Rα(2X) ≤ AV@Rα(2Y ) for every
α ∈ [0, 1) because FY ≤ FX pointwise and thus F2Y ≤ F2X pointwise. Hence,

βρ(µ) ≤ ρ(2Y )− 2ρ(−Y ) + δ,

and the first statement follows with b := ρ(2Y ) − 2ρ(−Y ). Moreover, convexity of ρ
implies −ρ(−Y ) ≤ ρ(Y ) − 2ρ(0). In addition, by the Kusuoka representation ρ(0) +
βρ(µ) ≥ 0 holds for µ ∈ dom(βρ) so that by positive homogeneity of the Average Value
at Risk we may conclude

2ρ(Y ) = sup
µ∈dom(βρ)

(ˆ
[0,1)

AV@Rα(2Y ) µ(dα)− 2βρ(µ)

)
≤ sup

µ∈dom(βρ)

(ˆ
[0,1)

AV@Rα(2Y ) µ(dα)− βρ(µ)

)
+ ρ(0) = ρ(2Y ) + ρ(0).

Thus, we end up with b ≤ 2ρ(2Y )− 3ρ(0), which completes the proof. 2

As a consequence of the representation result in Theorem A.1, we may verify the follow-
ing type of Fatou property.
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Corollary A.3 Let ρ fulfill the Lebesgue property, and let {Xk, X, Y | k ∈ N} ⊂ X such
that lim infk→∞Xk ≥ X P-a.s. and supk∈N |Xk| ≤ Y P-a.s. Then,

lim inf
k→∞

ρ(Xk) ≥ ρ(X).

Proof By assumption Xk := inf l∈N,l≥kXl and X := supk∈NXk are well-defined random
variables on (Ω,F ,P) satisfying Xk ≤ Y P-a.s. for k ∈ N and X ≤ Y P-a.s. These
random variables belong to X because X is solid. Furthermore, we may find by Propo-
sition A.2 a set M of Borel probability measures on [0, 1) such that βρ is bounded on
M, and

ρ(Y ) = sup
µ∈M

(ˆ
[0,1)

AV@Rα(Y ) µ(dα)− βρ(µ)

)
, (A.5)

for Y ∈ {Xk, X,X,X, Y | k ∈ N}, where AV@R0 stands for the expectation. By the
dominated convergence theorem the sequence (Xk)k∈N converges to X w.r.t. the L1-
norm. Hence, by L1-norm continuity of the expectation and the Average Value at Risk,
we obtain AV@Rα(Xk) → AV@Rα(X). Moreover, Xk ≥ Xk P-a.s. for k ∈ N, and
X ≥ X P-a.s. Then, by monotonicity of the expectation and the Average Value at Risk

lim inf
k→∞

AV@Rα(Xk) ≥ lim inf
k→∞

AV@Rα(Xk) ≥ AV@Rα(X) ≥ AV@Rα(X),

α ∈ [0, 1). Finally, observe AV@Rα(Xk) ≥ AV@Rα(−Y ) for α ∈ [0, 1) due to the
monotonicity of expectation and Average Value at Risk again. Then the application of
the Fatou lemma yields

lim inf
k→∞

ˆ
[0,1)

AV@Rα(Xk) µ(dα) ≥
ˆ
[0,1)

AV@Rα(X) µ(dα).

Now, the statement of Corollary A.3 may be derived easily from the representation A.5.
2

B. A concentration inequality

Let (Zj)j∈N be a sequence of independent, identically distributed d-dimensional ran-
dom vectors on (Ω,F ,P). The main tool for the proof of Theorem 5.1 is the following
concentration inequality.

Theorem B.1 Let F be some at most countable set of real-valued Borel measurable
mappings on Rd that are uniformly bounded by some positive constant b. Then for every
n ∈ N and any ε > 0

P
({
Sn ≥ E[Sn] + ε

})
≤ exp

(
−ε2

2nb2

)
,

where Sn := supf∈F
∣∣∑n

j=1 f(Zj)− n E
[
f(Z1)

]∣∣.
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Proof Since the mappings from F are uniformly bounded, and since F is at most
countable, the function

h : Rdn → R, (z1, . . . , zn) 7→ sup
f∈F

∣∣∣∣∣
n∑

j=1

f(zj)− n E
[
f(Z1)]

∣∣∣∣∣ ,
is Borel measurable and bounded. Furthermore, it satisfies for z1, . . . , zd, z ∈ Rd and
any i ∈ {1, . . . , n} the inequality

|h(z1, . . . , zn)− h(zi1, . . . , z
i
n)| ≤ sup

f∈F

∣∣f(zi)− f(zii)
∣∣ ≤ 2b,

where zii := z and zij := zj if j ̸= i. Hence, we may conclude immediately the statement
from McDiarmid’s bounded differences inequality (see e.g., [20, Theorem 3.3.14]). 2
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[4] D. Belomestny and V. Krätschmer. Central limit theorems for law-invariant coher-
ent risk measures. Journal of Applied Probability, 49:1–21, 2012.

[5] A. Ben-Tal and M. Teboulle. An old-new concept of convex risk measures: The
optimized certainty equivalent. Mathematical Finance, 17(3):449–476, 2007.

[6] A. Ben-Tal, D. den Hertog, A. de Waegenaere, B. Melenberg, and G. Rennen. Ro-
bust solutions of optimization problems affected by uncertain probabilities. Man-
agement Science, 59(2):341–357, 2013.

[7] H. Chen, D. Dentcheva, Y. Lin, and G. J. Stock. Central limit theorems for vector-
valued composite functionals with smoothing and applications, 2024. Available on
ArXiv.

[8] A. Cherny and D. Madan. New measures for performance evaluation. The Review
of Financial Studies, 22(7):2571–2606, 2009.

[9] J. Chu and L. Tangpi. Non-asymptotic estimation of risk measures using stochastic
gradient langevin dynamics. SIAM J. Finan. Math., 15(2):503–536, 2024.

[10] F. Delbaen. Risk measures for non-integrable random variables. Mathematical
Finance, 19:329–333, 2009.

46



[11] D. Denneberg. Distorted probabilities and insurance premiums. Methods of Oper-
ations Research, 63:3–5, 1990.

[12] D. Denneberg. Premium calculation: Why standard deviation should be replaced
by absolute deviation. ASTIN Bulletin: The Journal of the IAA, 20(2):181–190,
1990.

[13] D. Denneberg. Non-Additive Measure and Integral. Kluwer, Dordrecht, 1994.

[14] J. C. Duchi and H. Namkoong. Learning models with uniform performance via
distributionally robust optimization. Annals of Statistics, 49(3):1378–1406, 2021.

[15] L. R. Eeckhoudt and R. J. A. Laeven. Dual moments and risk attitudes. Operations
Research, 70(3):1330–1341, 2021.

[16] L. R. Eeckhoudt, R. J. A. Laeven, and H. Schlesinger. Risk apportionment: The
dual story. Journal of Economic Theory, 185:104971, 2020.

[17] G. C. Ferrante. Bounds on binomial tails with applications. IEEE Transactions on
Information Theory, 67(12):8273–8279, 2021.
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