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Abstract

Distributionally robust optimization (DRO) has been frequently used to address overfitting in

empirical risk minimization. In particular, DRO models based on ϕ-divergence have become a popular

choice for such purposes due to their tractability and variance regularization effect. However, when

outliers are present, ϕ-divergence DRO can in fact be counter-effective for addressing overfitting, since

variance is sensitive to outliers. We propose a new DRO model, which we call dual DRO, that is based

on maxiance-regularization, a variability measure also known as the Gini’s mean difference. As we

illustrate with numerical examples, this difference in regularization scheme ensures that the dual DRO

model is more robust against outliers than ϕ-divergence DRO, while also providing a tradeoff between

bias and variability. Furthermore, we show that optimization of dual DRO models is just as tractable

as ϕ-divergence DRO, and can be used as a tractable lower bound on the true optimal expectation

value problem with the same O(1/
√
n) asymptotic convergence rate as ϕ-divergence DRO.
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1 Introduction

A large part of the data-driven optimization literature has been concentrated on finding optimal solution

for the following problem:

min
x∈X

EP0 [l(x, ξ)], (1)

where l(x, ξ) is some real-valued loss function that evaluates a decision variable x ∈ Rd, and an un-

certain parameter ξ ∈ Rk following the true, but often unknown distribution P0. Problem (1) encom-

passes a broad class of decision problems in statistics and economics, with examples including regres-

sion/classification problems, portfolio optimization and inventory management problem. A very direct

approach to solve (1) is to replace the true expectation with its sample average approximation (SAA),

formulated as

min
x∈X

EP̂n
[l(x, ξ)], (2)

where P̂n is the empirical distribution constructed from an i.i.d. sample of ξ1, . . . , ξn. However, SAA

is known to be sensitive to overfitting, see for example Smith and Winkler [2006] that discusses the

shortcoming of SAA in decision analysis. To address this overfitting issue, various distributionally robust

optimization (DRO) models have been proposed as an alternative for SAA, where the expected loss value

is minimized with respect to a set of distributions. One popular example is DRO based on ϕ-divergence

ambiguity sets, which has emerged in many applications, see e.g., Duchi and Namkoong [2019], Duchi

et al. [2021], Lam [2019], Ben-Tal et al. [2013], Postek et al. [2016]. It is formulated as the following

min-max optimization problem:

min
x∈X

sup
Q:Iϕ(Q,P̂n)≤r

EQ[l(x, ξ)], (3)

where the ϕ-divergence Iϕ(Q,P) =
∫
Ω
ϕ
Ä
dQ
dP

ä
dP, for any convex function ϕ : [0,∞) → [0,∞) with

ϕ(1) = 0, serves as a variational measure between two probabilities Q ≪ P.
A main reason that makes ϕ-divergence DRO (3) an attractive model is its equivalence to mean-

variance regularization, when r → 0. This has been recognized in Gotoh et al. [2018, 2021], Duchi and

Namkoong [2019], Duchi et al. [2021], Ben-Tal and Teboulle [2007]. In particular, (3) provides a tractable

methodology for minimizing both the bias and variance. When there are near-optimal solutions of (1)

that have loss distributions with much larger variance than that of the true optimum, ϕ-divergence DRO

is able to exclude those solutions, whereas SAA is unable to make such distinction.

However, the use of variance as a measure of variability is only justified when the distribution is

symmetric. Otherwise, a large variance does not necessarily imply a large indifference among the majority

of a population. Indeed, by its own definition, variance is the squared difference between a realized value

and its mean. Since this measures the variability with respect to one reference point, it does not reflect

any relative differences in the entire population. This makes variance sensitive to outliers, which is one

of the main cause for overfitting. By contrast, the Gini’s mean difference, introduced by Corrado Gini

in 1912, which is a well-known measure among economists that study income inequality (see e.g., Gini

1912, 1921), is based on relative differences, and defined as:

GMD(X) =
1

2
E|X(1) −X(2)|, (4)
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where for any random variable X, X(1), X(2) denote its i.i.d. copies. The advantages of GMD as a

substitute for variance have been demonstrated for many examples in economics and statistics such as

regression models and portfolio theory. We refer the readers to notable works by Yitzhaki [1982], Shalit

and Yitzhaki [1984], Olkin and Yitzhaki [1992], and the book The Gini’s Methodology by Yitzhaki and

Schechtman [2012]. In risk theory, the GMD, which is referred to as maxiance in Eeckhoudt and Laeven

[2021], has also emerged as the key ingredient for constructing a local index of absolute risk aversion

in non-expected utility theory,1 similar to the appearance of variance in expected utility theory. To

emphasize the dual relationship between variance and GMD that is also highlighted in this paper, we

will henceforth adopt the maxiance terminology as suggested by Eeckhoudt and Laeven [2021].

When outliers are presented in the data, using a variance regularization model such as ϕ-divergence

DRO to address overfitting in SAA can in fact produce counter-effective results. To illustrate this,

consider a simple decision problem that only involves choosing between two loss distributions X and Y ,

where X = Unif[5, 7]+25ϵ is a sum of uniform distribution on [5, 7], with a Bernoulli variable ϵ that takes

1 with probability 0.05, simulating outliers. On the other hand, Y = Unif[1.85, 12.85]. By construction,

E[X] = 7.25 < 7.35 = E[Y ]. Therefore X is the true optimal choice for problem (1). Suppose we

do not know the true distributions but only observe 1000 samples of both X and Y , as represented in

Figure 1. It can be observed that except for the outliers, the samples of Y exhibit a larger variability

than X. Since their true expected value are also very similar, the empirical mean of Y can sometimes

be less than that of X due to sampling errors, leading to the wrong conclusion that Y is the optimal

solution for (1) (for example, in the particular realizations given in Figure 1, we have the sample mean

Ê[X] = 7.47 > 7.45 = Ê[Y ]). If one uses ϕ-divergence DRO to address overfitting, then the bias is even

more towards Y , since the empirical standard deviation estimated from the 1000 data in Figure 1 yields

σ̂X = 5.96 > 3.2 = σ̂Y , due to the presence of outliers. On the other hand, the maxiance, is less affected

by the outliers of X: it outputs an estimate of 1.70 for X and a value of 1.85 for Y . Therefore, in this

situation, we see that the maxiance provides a more realistic representation of variability, and is a more

reasonable choice than the variance.

Motivated by this example, we construct a new DRO model, where not the variance but the maxiance

is regularized. It turns out that such construction is completely dual from the standard DRO procedure,

in the sense that it considers deviations in a different dimension: while the traditional DRO such as (3)

makes a distributional shift in the probability plane, our new DRO does that in the outcome plane. To

emphasize this duality, we will call our new DRO model dual DRO, and refer the ϕ-divergence DRO in

(3) as primal DRO. More precisely, given any positive loss random variable X = [x1; p1, x2; p2, . . . , xn; pn]

with outcomes xi’s that take probabilities pi’s, we define the dual DRO risk measure ρϕδ,p(X) by mini-

mizing the expected loss, under the shifted outcome values that are penalized from the nominal outcomes

(x1, . . . , xn), measured using a ϕ-divergence with a penalization constant δ > 0:

ρϕδ,p(X) = inf
∆y∈Rn

+

n∑
i=1

F i∆yi +
1

δ
Iϕ(∆y,∆x). (5)

Here, we defined ∆x = (∆x1, . . . ,∆xn) with ∆xi = xi−xi−1 for i = 2, . . . , n and ∆x1 = x1, and similarly

for ∆y. We assume that the outcomes are ordered: x1 > 0,∆xi ≥ 0, for all i ≥ 2. We let F i =
∑n
j=i pj

for i = 1, . . . , n denote the decumulative probabilties, so that for any ∆y ∈ R+
n = {a ∈ Rn : ai ≥ 0}, we

1see Yaari [1987], Quiggin [1982], Schmeidler [1986, 1989] for more background on non-expected utility theory
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Figure 1: 1000 samples drawn for two distributions X = Unif[5, 7]+25ϵ and Y = Unif[1.85, 12.85], where
Unif[a, b] is the uniform distribution on [a, b] and ϵ ∼ Ber(0.05) is a Bernoulli.

have
∑n
i=1 F i∆yi =

∑n
i=1 piyi. Moreover, we define the divergence Iϕ(∆y,∆x) =

∑n
i=1 ∆xiϕ (∆yi/∆xi).

Let us comment more on (5). We note that the dual DRO is designed to minimize both the expected loss

and the maxiance, which is a measure of relative differences. If X is a distribution that has large relative

differences, then Iϕ(∆y,∆x) is a large penalization term since it is a sum of the variations ∆xi with

non-negative coefficients ϕ(∆yi/∆xi) ≥ 0. Therefore, when solving a dual DRO optimization problem:

min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ)), (6)

where we minimize the dual DRO risk measure of the loss function under the empirical distribution

P̂n = 1
n

∑n
i=1 ιξi

constructed from i.i.d. data (ξ1, . . . , ξn)
2, we are effectively searching for a decision x

that minimizes the expected loss and relative differences of its distribution l(x, ξ) ∼ P̂n, which is the type

of procedure that we aim to achieve.

Our main contributions may be summarized as follows:

• We prove the asymptotic equivalence between dual DRO (5) and mean-maxiance regularization,

as δ → 0. This equivalence also holds uniformly across all decision variables, for the optimization

problem (6). Furthermore, we extend this asymptotic equivalence to a primal-dual DRO model,

where we consider both distributional and outcomes shifts penalized by two ϕ-divergences. This

leads to a more general mean-maxiance-variance regularization model.

• We show that the minimization problem (6) can be computed by solving a convex optimization

problem that provides tight lower and upper bounds on (6). We then provide numerical examples

where the solution of a dual DRO optimization problem can be more optimal than the ones obtained

2ιξi
denotes the Dirac delta distribution.
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from the primal DRO and the empirical risk minimization, in terms of finding an optimal solution

for the true minimization problem minx∈X EP0
[l(x, ξ)].

• Finally, we establish the asymptotic convergence rate of the dual DRO minimization problem (6)

as an estimator and a lower bound on the true optimal value minx∈X EP0
[l(x, ξ)]. We show that a

similar dual DRO upper bound can also be obtained.

Finally, we give a brief review of other related literature. Besides the equivalence between ϕ-divergence

DRO and mean-variance optimization that are established in Gotoh et al. [2018], Duchi and Namkoong

[2019], Duchi et al. [2021], regularization effect of other DRO models have also been established in for

example Gotoh et al. [2020]. In particular, it is known that Wasserstein DRO regularizes the gradient

norm of the decision function (see e.g., Gao et al. 2022). This has led to the application of Wasserstein

DRO in machine learning, such as improving the robustness of regression models against outliers, see e.g.,

Chen and Paschalidis [2018], and other learning tasks, see Kuhn et al. [2019]. Recent papers by Bartl and

Mendelson [2022] and van Parys and Zwart [2025] have also examined robust estimation procedure for

the optimal expected value problem (1) in the setting of heavy-tailed distributions. Bartl and Mendelson

[2022] purposed a novel procedure for estimating the solution and objective value of (1) that attains the

optimal gaussian rate in finite samples. However, their desired statistical property comes at the expense

of computational tractability. Van Parys and Zwart [2025] examined the rate at which the probability

of over- and underestimating the true expected value decays for various data-driven formulations. In

particular, they showed that the mean-variance model (with an O(1/
√
n) penalization coefficient for the

standard deviation) has a large overestimation probability for the expected value when the distributions

are heavy-tailed. On the other hand, the dual DRO model based on mean-maxiance regularization that

we purpose in this paper is computationally tractable, and can serve as an attractive new data-driven

formulation for heavy-tailed distributions, as our numerical simulations suggests that maxiance is robust

against outliers and adds a much less conservative regularization term to the empirical mean than the

mean-variance model.

The remaining parts of the paper are organized as follows: we first introduce the maxiance and its

relation to distortion risk measures in Section 2. We then prove our main results on asymptotic equivalence

in Section 3. In Section 4, we study the minimization problem (6), and its statistical properties in

Section 5. Finally, a concluding remark is provided in Section 6.

2 Preliminaries

2.1 ϕ-Divergence

We start by recalling the definition of a Csiszar ϕ-divergence. Let ϕ : R → [0,∞) be a convex function

such that ϕ(1) = 0 and dom(ϕ) ⊂ [0,∞). Then, the ϕ-divergence between any two non-negative vectors

p,q ∈ Rn+, is defined as:

Iϕ(q,p) =

n∑
i=1

piϕ

Å
qi
pi

ã
.

We note that Iϕ(q,p) is jointly convex in q and p, and that Iϕ(q,p) ≥ 0, Iϕ(p,p) = 0. Furthermore,

we adopt the convention 0ϕ (0/0) = 0 and 0ϕ (t/0) = limz→∞ ϕ(z)/z. Throughout this paper, we assume
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limz→∞ ϕ(z)/z = ∞ and that ϕ is sufficiently smooth at 1 (i.e., infinitely differentiable at 1). We note

that these assumptions are not restrictive, since they hold for many canonical examples of ϕ-divergences.

For any convex function f : Rd → R, we denote f∗(y) = supx∈dom(f) y
Tx − f(y) as the convex

conjugate of f . For any concave function g : Rd → R, we denote g∗(y) = infx∈dom(g) y
Tx − g(x) as the

concave conjugate of g. We note that a convex conjugate is always convex and a concave conjugate is

always concave. In particular, we have that ϕ∗(y) = supx≥0 yx− ϕ(x) and (−ϕ)∗(y) = infx≥0 yx+ ϕ(x).

By definition, the following relation holds:

(−ϕ)∗(y) = −ϕ∗(−y),∀y ∈ R. (7)

In the following proposition, we summarize some properties of ϕ∗ that are frequently used in this paper.

Proposition 1. Let ϕ be a Csiszar ϕ-divergence function. Then

1. ϕ∗ is non-decreasing.

2. ϕ∗(0) = 0 and ϕ∗(y) ≥ y, for all y ∈ R.

If ϕ is also three times continuously differentiable at 1 with ϕ′′(1) > 0, then ϕ∗ is twice continuously

differentiable at 0, with (ϕ∗)′(0) = 1, (ϕ∗)′′(0) = 1/ϕ′′(1), and (ϕ∗)′′′(0) = −ϕ′′′(1)/(ϕ′′(1))3.

2.2 Maxiance and Distortion Risk Measures

For a random variable X, the maxiance is defined as

m2(X) = E[max{X(1), X(2)}]− E[X], (8)

where X(1), X(2) are i.i.d. draws of X. We note that the maxiance can also be equally expressed as

m2(X) = E[X]−E[min{X(1), X(2)}]3. Throughout this paper, we also refer the quantity E[min{X(1), X(2)}]
as the second dual moment (adopted from Eeckhoudt et al. 2020). As mentioned previously, the maxiance

is also equal to the Gini’s mean difference that measures the average of the absolute difference between

two i.i.d. random variable. Indeed, one has m2(X) = E|X(1) −X(2)|/2.
An important tool that allows us to study the dual DRO model (5) is by relating it to the class

of distortion risk measures. This class of risk measures is characterized by a distortion function h :

[0, 1] → [0, 1] that is non-decreasing and satisfies h(0) = 0, h(1) = 1. Given a distortion function h, the

corresponding distortion risk measure of a loss variable X is defined as the Choquet integral

ρh(X) =

∫ ∞

0

h (P[X > t]) dt+

∫ 0

−∞
(h (P[X > t])− 1) dt. (9)

If X = [x1; p1, x2; p2, . . . , xn; pn] is a discrete random variable with realizations xi’s that take probabilities

pi’s, such that x1 ≤ x2 ≤ . . . ≤ xn. Then, ρh(X) becomes a rank-dependent sum

ρh(X) =

n∑
i=1

h
(
F i
)
(xi − xi−1), (10)

3since E[max{X(1), X(2)}] + E[min{X(1), X(2)}] = 2E[X]
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where F i =
∑n
j=i pj for i = 1, . . . , n, are the decumulative probabilities and we set x0 = 0. The class

of distortion risk measures contains several interesting examples. This includes the Conditional Value-

at-Risk/Expected shortfall (when h(p) = min{p/α, 1}), and the Value-at-Risk (when h(p) = 1[α,1](p)).

If h(p) = 2p− p2, then the corresponding distortion risk measure is also equal to a mean plus maxiance

evaluation.

Further Notations. Throughout this paper, we adopt the landau O notation, where an = O(bn)

if lim supn→∞ |an/bn| < ∞, and an = o(bn) if limn→∞ |an/bn| = 0. Similar notations for stochastic

convergence are adopted from van der Vaart [1998]. We also write Xn
P∗

→ X for convergence in outer

probability, as defined in van der Vaart and Wellner [2023]. Moreover, for any integer n, we let [n] :=

{1, . . . , n}.

3 Asymptotic Equivalence of Dual DRO and Mean-Maxiance

We now study the dual DRO model in a discrete probability setting, since one often works with the

empirical distribution in practice. Let (Ω,F) be a sample space andX : Ω → R a positive random variable

that is distributed on n support points 0 < x1 ≤ x2 ≤ . . . ≤ xn and with probabilities p1, p2, . . . , pn. We

assume that mini pi > 0 (otherwise, discard those xi’s where pi = 0). We denote ∆x = (∆x1, . . . ,∆xn)

with ∆xi = xi − xi−1 for i = 2, . . . , n and ∆x1 = x1. The same definition is applied to ∆y. Then, we

have that ∆x ∈ Rn+, where Rn+ is the set of n-dimensional vectors with non-negative entries.

Let ϕ be a divergence function. We recall the definition of the dual DRO model, where instead of

the probabilities, we optimize with respect to the payoffs dimension ∆y, controlled by a ϕ-divergence

penalization term:

ρϕδ,p(X) = inf
∆y∈Rn

+

n∑
i=1

F i∆yi +
1

δ
Iϕ(∆y,∆x), (11)

where Iϕ(∆y,∆x) =
∑n
i=1 ∆xiϕ (∆yi/∆xi).

Our first main result is the asymptotic equivalence between the dual DRO model and mean-maxiance

regularization as δ → 0, which is stated in the next theorem.

Theorem 1. Let ϕ be a ϕ-divergence function that is twice continuously differentiable at 1. Then, we

have that

ρϕδ,p(X) =

Å
1− δ

2ϕ′′(1)

ã
Ep[X] +

δ

2ϕ′′(1)
m2,p(X) + o(δ). (12)

Although not stated in Theorem 1, we should note that the dual DRO in (11) is a minimization

problem that can be solved explicitly, and is (modulo a positive constant) equal to a distortion risk

measure. This result dates back to Ben-Tal et al. [1991], which shows that many classes of risk measures

admit a robust representation with a ϕ-divergence penalization. In particular, as shown in the proof of

Theorem 1, the dual DRO model in (11) is proportional to the following distortion risk measure:

ρϕδ,p(X) =
(−ϕ)∗(δ)

δ
Rϕ
δ,p(X)

≜
(−ϕ)∗(δ)

δ

n∑
i=1

hδ(F i)∆xi,
(13)
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Figure 2: Shape of the distortion function hδ(p) = (−ϕ)∗(δp)
(−ϕ)∗(δ) with varying δ, where ϕ is the Kullback-

Leibler divergence.

where the distortion function hδ : [0, 1] → [0, 1] is given by hδ(p) = (−ϕ)∗(δp)/(−ϕ)∗(δ). This gives the

dual DRO an interpretation from risk theory, which implies that decision-making with the dual DRO

model is within the axioms of Yaari’s dual theory (see Yaari 1987). The parameter δ, which controls the

degree of penalization in the dual DRO model (11), shapes the concavity of the distortion function hδ.

As shown in Figure 2, a larger δ gives more concavity to hδ, which puts more probability weights on the

worst outcomes of the loss X.

As we can see in (12), the asymptotic analysis of ρϕδ,p(X) shows that there is still a factor δ/(2ϕ′′(1))

at the expectation, since ρϕδ,p(X) is by definition a lower bound on the expectation. This is not entirely

analogous to the primal ϕ-divergence DRO case, where only the variance is penalized by a first-order

factor. It turns out that the expansion of the distortion risk measure Rϕ
δ,p(X) excludes the delta factor

at the expectation, and the maxiance emerges as the only first-order penalized factor.

Proposition 2. Let ϕ be a ϕ-divergence that is twice continuously differentiable at 1. We have that

Rϕ
δ,p(X) = Ep[X] +

δ

2ϕ′′(1)
m2,p(X) + o(δ).

As mentioned in (13), ρϕδ,p(X) and Rϕ
δ,p(X) differ only by a multiplicative factor. Therefore, mini-

mizing ρϕδ,p as in (6) yields the same optimal solution as minimizing Rϕ
δ,p. The only difference is that

in the former case, one obtains a lower bound on the expected value, while the latter yields an upper

bound. Finally, we can extend the primal DRO and dual DRO to a primal-dual DRO model, where we

consider shifts in both the outcome space and the probability space, measured by two divergences ϕ and

8



ψ. More precisely, we define

ρxp(X) = sup
q∈Pn

inf
∆y∈Rn

+

n∑
i=1

qiyi +
1

δ1
Iϕ(∆y,∆x)− 1

δ2
Iψ(q,p). (14)

The next result states the asymptotic equivalence of a primal-dual DRO model to mean-variance-

maxiance regularization.

Theorem 2. Let ϕ, ψ be two Csiszar ϕ-divergence functions that are both twice continuously differentiable

with ϕ′′(1) > 0 and ψ′′(1) > 0. Assume pi > 0 for all i = 1, . . . , n. Then, we have that

ρxp(X) =

Å
1− δ1

2ϕ′′(1)

ã
Ep[X] +

δ2
2ψ′′(1)

Varp(X)

+
δ1

2ϕ′′(1)
m2,p(X) + o(δ1) + o(δ2) +O(δ1δ2n).

(15)

Therefore, we see that when a loss variable X only has finitely many n support points, then the above

equivalence holds when δ1, δ2 → 0. We note that since the dual DRO model is equivalent to the distortion

risk measure (13), this also gives a regularization perspective for a distributionally robust distortion risk

measure.

4 Optimization of Dual DRO Models

In this section, we discuss how to solve a dual DRO minimization problem in a data-driven setting.

Suppose we have an i.i.d. sample of data ξ1, . . . , ξn. This allows us to construct an empirical distribution

on ξ, namely P̂n =
∑n
i=1 ιξi

/n, where ι· denotes the Dirac delta measure. Then, we can consider the

following dual DRO minimization problem:

min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ)), (16)

where X ⊂ Rd is a compact feasible set imposed on x consisting of convex constraints, and l(x, ξ)

is a positive loss function that is convex and continuous in x, for each random vector ξ in Rk. We

recall that the dual DRO evaluation ρϕ
δ(n),P̂n

(l(x, ξ)) is a rank-dependent evaluation for each decision

x ∈ X . Indeed, for any fixed x ∈ X , we must first rank the outcomes by indices i(x) such that

l(x, ξ1(x)) ≤ . . . ≤ l(x, ξn(x)). Then, according to (11), we have that

ρϕ
δ(n),P̂n

(l(x, ξ)) = inf
∆y∈Rn

+

n∑
i=1

yi(x)

n
+

1

δ(n)
∆l(x, ξi(x))ϕ

Ç
∆yi(x)

∆l(x, ξi(x))

å
,

where ∆l(x, ξ1(x)) = l(x, ξ1(x)), and ∆l(x, ξi(x)) = l(x, ξi(x))− l(x, ξ(i−1)(x)) for i = 2, . . . , n. Hence, we

see that optimization of dual DRO models is fundamentally different from its primal counterpart (3), due

to its rank-dependent nature on the decision variable. To circumvent this, we use (13), which gives

ρϕ
δ(n),P̂n

(l(x, ξ))

9



=
1

δ(n)

n∑
i=1

(−ϕ)∗
Å
δ(n)

n− i+ 1

n

ã
∆l(x, ξi(x)).

Therefore, the dual DRO minimization problem (16) is equivalent to a distortion risk measure minimiza-

tion problem, where the distortion function is hδ(n)(p) = (−ϕ)∗(δ(n)p)/(−ϕ)∗(δ(n)). The idea now is

to invoke tools from risk theory (see Proposition 10.3 of Denneberg [1994]), which is summarized in the

following theorem that states an equivalence between distortion risk measures and robust optimization.

Theorem 3. Let h : [0, 1] → [0, 1] be a distortion function that is concave, non-decreasing, and satisfies

the boundary conditions h(0) = 0 and h(1) = 1. If X = [x1; p1, x2; p2, . . . , xn; pn] is a discrete random

variable with realizations xi’s that take probabilities pi’s, such that x1 ≤ x2 ≤ . . . ≤ xn, then we have that

ρh(X) = sup
q∈Mh(p)

n∑
i=1

qixi,

where ρh(X) is the rank-dependent sum as defined in (10), and Mh(p) is the set

Mh(p) =

{
q ∈ Rn

∣∣∣∣∣ q ≥ 0,

n∑
i=1

qi = 1,

∑
j∈J

qj ≤ h

Ñ∑
j∈J

pj

é
,∀J ⊂ [n]

 .

(17)

Hence, by (13), it immediately follows from Theorem 3 that problem (16) is equivalent to a min-max

problem, where the uncertainty set is given by (17), for h = hδ(n). This leads to the following corollary.

Corollary 1. We have for any δ(n) > 0,

min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ)) =
(−ϕ)∗(δ(n))

δ(n)
min
x∈X

max
q∈Mϕ

δ(n)

n∑
i=1

qil(x, ξi). (18)

where

Mϕ
δ(n) =

{
q ∈ Rn

∣∣∣∣∣ q ≥ 0,

n∑
i=1

qi = 1,

∑
j∈J

qj ≤ hδ(n)

Ñ∑
j∈J

1

n

é
,∀J ⊂ [n]

 .

(19)

We note that although the right-hand side of (18) is a primal DRO problem, the ambiguity setMϕ
δ(n) is

fundamentally different from the canonical examples that are considered in the standard DRO literature,

namely sets that are based on statistical distances or imposed moment conditions. Instead, Mϕ
δ(n) uses

probability weighting, and it contains 2n number of constraints: q ∈ Mϕ
δ(n), if and only if the probability

of any event under the distribution q is bounded by the probability of that event under the distorted

empirical distribution. Due to this complexity, the right-hand side of (18) cannot be solved using the

standard reformulation technique as developed in Ben-Tal et al. [2013]. Fortunately, optimization of

distortion risk measure with discrete probabilities has been studied in previous work by Jin et al. [2025].

10



One way to efficiently compute (18) is to use a piecewise linear approximation of the concave function

hδ(n), both from below and from above. This gives an upper and a lower bound on the optimal value

(18), both of which converge as the approximation error of hδ(n) tends to zero. More precisely, for

any concave distortion function h, one may approximate it from below with a piecewise-linear function

hL = minj=1,...,K hj , where hj(p) = lj · p+ bj are affine functions such that the slopes l1 > . . . > lK are

decreasing, and the intercepts b1 < . . . < bK are increasing. The affine functions are defined on a set of K

support points 0 = s0 < s1 < . . . < sK = 1, such that hL(p) = hj(p), if p ∈ [sj−1, sj ], for all j = 1, . . . ,K.

Moreover, we may impose b1 = 0 and lK + bK = 1, so that hL(0) = 0 and hL(1) = 1. Therefore, if one

replaces hδ(n) by its lower piecewise-linear approximation hL ≤ hδ(n), then the ambiguity set Mϕ
δ(n) is

approximated by the smaller subsetMhL (1/n) (see definition in (17)), where 1/n = (1/n, . . . , 1/n) ∈ Rn.
Hence, (18) can be approximated with the lower bound minx∈X supq∈MhL (1/n)

∑n
i=1 qil(x, ξi). As shown

by Jin et al. [2025], this lower bound can be computed as the following convex optimization problem with

O(n ·K) number of constraints.

Theorem 4. Let hL = min1≤j≤K hj be a piecewise-linear concave distortion function. Then, we have

that minx∈X supq∈MhL (1/n)

∑n
i=1 qil(x, ξi) can be computed by solving the following optimization problem:

min
x∈X

β,λij ,νj

β +

K∑
j=1

νjbj +
1

n

m∑
i=1

K∑
j=1

λij lj

s.t. l(x, ξi)− β −
K∑
j=1

λij ≤ 0, ∀i ∈ [n]

λij ≤ νj , ∀i ∈ [n], ∀j ∈ [K]

λij , νj ≥ 0, ∀i ∈ [n], ∀j ∈ [K]

(20)

We further note that as outlined by Jin et al. [2025], for any constant ϵ > 0, one can find a

piecewise-linear approximation hL ≤ h, with the least number of K pieces, that satisfies the error bound

supp∈[0,1] |hL(p)− h(p)| ≤ ϵ. This allows us to minimize the number of constraints in (20). Furthermore,

for any approximation function hL with error bound ϵ, one can also obtain an upper approximation of

h̃L ≥ hδ(n) by defining the function

h̃L(p) =

0 p = 0

min{hL(p) + ϵ, 1} 0 < p ≤ 1.

Then, the ambiguity set Mϕ
δ(n) is contained in the larger set M h̃L (1/n). This allows us to also compute

an upper bound on (18), by solving minx∈X sup
q∈M h̃L (1/n)

∑n
i=1 qil(x, ξi), which again can be computed

using (20), by simply replacing the constants bj with bj + ϵ. As further shown by Jin et al. [2025], if

infx∈X ,i=1,...,n l(x, ξi) > −∞ holds, then both bounds converge to the exact value (18) as ϵ → 0. Since

our loss function is assumed to be positive, this condition is automatically satisfied.

4.1 A Numerical Investigation on the Advantages of Dual DRO Optimization

We investigate numerically the difference between dual DRO (5), primal DRO (3), and SAA (2), as data-

driven methods for obtaining solutions of the true nominal problem infx∈X EP0 [l(x, ξ)]. In the following
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two simulation studies, we show that the dual DRO model can provide solutions that are closer to the

true optimum of the nominal problem than the primal DRO and the SAA, when the true optimal solution

has a small “variability”, but a large variance due to the presence of outliers. The Python codes for each

experiment are provided on https://github.com/GuanJinNL/Dual DRO.

4.1.1 Example 1: Portfolio Optimization

We consider a portfolio optimization problem with two assets ξ = (ξ1, ξ2) that follow a similar distribution

as the example presented in Figure 1. We let ξ1 = Unif[6, 8] + 26ϵ0, where ϵ0 is a Bernoulli variable that

takes 1 with probability 0.05. Let ξ2 = Unif[0.4, 16.4]. Then, E[ξ1] = 8.3 < 8.4 = E[ξ2]. Hence, in the

portfolio optimization problem where X = {x ∈ R2 | x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0} and l(x, ξ) = xT ξ, it

is clear that x = (1, 0) should be the true optimal solution.

To compare the performance between primal DRO, the dual DRO, SAA, we generate 100 samples

of ξ of size n ∈ {50, 100, 200, 500, 1000, 2000} and record the average (among the 100) optimal portfolio

weight x∗
1,model on ξ1 obtained from each model ∈ {saa,p.dro,d.dro}.4 We choose for both primal and

dual DRO models the KL-divergence ϕ(t) = t log t − t + 1. Then, for each sample of size n that we

draw from ξ, we choose for the primal DRO model the radius r(n) = χ2
0.95,1/(2n), and for the dual DRO

model, we choose δ(n) =
»
2χ2

0.95,1/n. According to Proposition 2, identity (13) and Duchi et al. [2021],

we have that for each x ∈ {x1,x2},

sup
Q:Iϕ(Q,P̂n)≤r(n)

EQ[l(x, ξ)]

= EP̂n
[l(x, ξ)] +

 
χ2
0.95,1

2n

»
VarP̂n

[l(x, ξ)]

+ o(1/n), (p.DRO)

and

δ(n)

(−ϕ)∗(δ(n))
ρϕ
δ(n),P̂n

(l(x, ξ))

= EP̂n
[l(x, ξ)] +

 
χ2
0.95,1

2n
· m2,P̂n

[l(x, ξ)]

+ o(1/n). (d.DRO)

Therefore, our choice of r(n) and δ(n) ensures that the coefficients for expectation, standard deviation,

and the maxiance are all equal for a fair comparison. The results are displayed in Table 1. As we can

observe, the average optimal portfolio weight on ξ1 for the dual DRO model is higher than those for SAA

and primal DRO for all sample sizes n. This shows that dual DRO is typically better at identifying the

more preferable asset ξ1, in cases where SAA underperforms due to its sensitivity to large maxiance of ξ2,

and primal DRO underperforms due to its sensitivity to outliers of ξ1. To further examine the difference

between primal and dual DRO relative to the performance of SAA, we calculate the average optimal

portfolio weight on ξ1 for both DRO models conditioned on the realizations µ̂1 > µ̂2 and µ̂1 < µ̂2, where

4We solved the dual DRO using (20), and a piecewise-linear approximation of hδ(n) with uniform approximation error
ϵ = 0.0001
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µ̂1, µ̂2 are empirical estimations of E[ξ1],E[ξ2]. Indeed, the two cases µ̂1 < µ̂2 and µ̂1 > µ̂2 correspond

respectively to the situations where SAA makes either a perfectly correct or incorrect decision. As we can

observe from Table 1, when µ̂1 > µ̂2, which is the case when SAA outputs the correct optimal portfolio

weight (1, 0), the dual DRO also does that by putting almost all weights on ξ1, while the primal DRO

puts only half of the weight. On the contrary, when µ̂1 < µ̂2, which is the case when SAA is incorrect and

outputs a solution (0, 1), both the dual and primal DRO will make the correction by allocating weights

on ξ1, and on average the dual DRO model does that more than its primal counterpart.

Table 1: Average optimal portfolio weight on ξ1 obtained from solving the dual DRO, the primal DRO,
and the SAA over 100 samples of ξ of size n. This average is also calculated conditioned on sample
realizations µ̂1 > µ̂2 and µ̂1 < µ̂2, where µ̂1, µ̂2 are empirical estimations of E[ξ1],E[ξ2]

n x∗
1,saa x∗

1,d.dro x∗
1,p.dro x∗

1,d.dro, µ̂1>µ̂2
x∗
1,p.dro, µ̂1>µ̂2

x∗
1,d.dro, µ̂1<µ̂2

x∗
1,p.dro, µ̂1<µ̂2

50 0.570 0.652 0.393 0.988 0.544 0.206 0.192
100 0.550 0.647 0.346 0.979 0.465 0.240 0.201
200 0.510 0.673 0.380 0.985 0.513 0.348 0.242
500 0.610 0.679 0.375 0.986 0.479 0.198 0.211
1000 0.630 0.749 0.453 0.990 0.564 0.339 0.264
2000 0.790 0.852 0.499 0.992 0.558 0.328 0.280

4.1.2 Example 2: Median Estimation

We provide another example where the dual DRO model exhibits more robustness against outliers than

its primal counterpart. We investigate the problem of estimating the median of a distribution, which is

also the optimum of the following nominal problem:

inf
x∈R

EP0
|x− ξ|. (21)

Using the example given by Duchi and Namkoong [2019], we let ξ ∈ {−1, 0, 1} be a distribution that

takes value 0 with some probability δ0, and the values −1 and 1 with probability (1− δ0)/2. Clearly, the

true median is equal to zero. Duchi and Namkoong [2019] has shown that for this particular distribution,

the primal DRO model will provide a better estimation of the median than the SAA model, as δ0 → 0.

For this experiment, we also consider a perturbation ξ′ = ξ + e, where e is an adversarial attack on the

data of ξ such that it takes the value 0 with some probability 1−ϵ0, but the value 300 with the remaining

small probability ϵ0. We set δ0 = 0.01 and ϵ0 = 0.009. By construction, the true median of ξ′ is still

equal to 0.

We then solve the SAA, the primal DRO, and the dual DRO versions of problem (21) for a sample size

of n = 1000, over 100 repetitions. We again use the KL-divergence. For the primal DRO model, we choose

the radius r(n) = χ2
0.999,1/n. The δ(n) in the dual DRO model is then set to be δ(n) =

»
2χ2

0.999,1/n

to ensure equal penalization of both DRO models, similar to the previous example. To compare the

performance of the three models, we count the number of accepted solutions (over 100 trials) of each

model, where a solution is considered accepted if it has absolute value within 0.01 of the true median

0. We do this both for the samples of ξ, and the samples of ξ′, i.e., the perturbed samples. The results

are given in Table 2. As we can observe, in the case where the data ξ is not perturbed, the primal DRO

model outperforms the SAA model as predicted by Duchi and Namkoong [2019], and the dual DRO model
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shows even better performance. However, when the perturbed data ξ′ is used, the performance of the

primal DRO model quickly deteriorates, whereas the dual DRO model is still yielding a similar number

of accepted solutions. This again shows that the dual DRO model is more robust against outliers.

No perturbation With perturbation
SAA 26 22

primal DRO 50 22
dual DRO 86 84

Table 2: The number of accepted solutions obtained from each model, over 100 repetitions. A solution
is accepted if its absolute value is within 0.01 of the true median value 0.

5 First-Order Asymptotics of Dual DRO Estimators

In this section, we establish the asymptotic convergence rate of the dual DRO model as an estimator

of the true expectation minimization problem (1), by deriving the limiting distribution of the following

quantity
√
n

Å
min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ))−min
x∈X

EP0 [l(x, ξ)]

ã
. (22)

In addition, as suggested by Proposition 2, an upper bound on (1) can also be obtained by simply

minimizing the distortion risk measures as defined in (13). Hence, we are also interested in examining

the limit distribution of
√
n

Å
min
x∈X

Rϕ

δ(n),P̂n
(l(x, ξ))−min

x∈X
EP0

[l(x, ξ)]

ã
. (23)

To study both (22) and (23), we use tools from empirical process theory, where we view the empirical

measure as a random element in l∞(H), the set of all bounded real-valued functions defined on a class H5.

In the context of our problem, we define the function class H = {x ∈ X : l(x, ξ) : Ω → R}. We assume

that H has an envelope function M2 : Rk → R, such that supx∈X |l(x, ξ̃)| ≤ M2(ξ̃), ∀ξ̃ ∈ Rk. We also

introduce the following notation, where for each x ∈ X , we denote the second dual moment dm2,P0(x) =

EP0 [min{l(x, ξ(1)), l(x, ξ(2))}], σ2
P0
(x) = VarP0(l(x, ξ)) and with a slight abuse of notation m2,P0(x) =

m2,P0
(l(x, ξ)). Furthermore, for an empirical distribution P̂n = 1

n

∑n
i=1 ιξi

, we denote dm2,P̂n
(x) =

EP̂n×P̂n
[min{l(x, ξ(1)), l(x, ξ(2))}], as an evaluation with respect to the product measure P̂n × P̂n, and

m2,P̂n
(x) = EP̂n

[l(x, ξ)]− dm2,P̂n
(x).

We first examine the measurability of (22) and (23) as functions of Ω to the outcome space R.

Proposition 3. The functions minx∈X Rϕ

δ(n),P̂n
(l(x, ξ)) : Ω → R and minx∈X ρ

ϕ

δ(n),P̂n
(l(x, ξ)) : Ω → R

are measurable, if l(x, ξ̃) is a Carathéodory function, i.e., continuous in x, for all ξ̃, and measurable in

ξ̃, for all x.

The derivation of the limit distributions for (22) and (23) requires the following theorem which states

that the maxiance regularization effect of dual DRO models also holds uniformly in the decision space.

Theorem 5. Let ϕ be a ϕ-divergence function that is four times continuously differentiable at 1. As-

sume that the envelope function M2 of the class H is integrable (i.e., EP0
|M2(ξ)| < ∞). Let δ(n) :=

5Note that since X is assumed to be compact and l(x, ξ̃) continuous in x for all ξ̃ ∈ Rk, we have
supx∈X maxi=1,...,n l(x, ξi) < ∞, and therefore (22) and (23) can also be viewed as elements in l∞(H).

14



δ(ξ1, . . . , ξn) be a measurable function such that δ(ξ1(ω), . . . , ξn(ω)) > 0 for all ω ∈ Ω and δ(n)
P→ 0.

Then, we have that,

ρϕ
δ(n),P̂n

(l(x, ξ))

= EP̂n
[l(x, ξ)]− δ(n)

2ϕ′′(1)
dm2,P̂n

(x) + ϵn(x)

Rϕ

δ(n),P̂n
(l(x, ξ))

= EP̂n
[l(x, ξ)] +

δ(n)

2ϕ′′(1)
m2,P̂n

(x) + ϵ̃n(x),

where supx∈X |ϵn(x)|/δ(n), supx∈X |ϵ̃n(x)|/δ(n)
P→ 0.

We are now ready to state the following main theorem, which shows that if we choose δ(n) =
√
r/n,

for some r > 0, then (22) and (23) converge to a non-centered Gaussian process. This requires the

assumption that the class H is P0-Donsker, which means that
√
n(P̂n − P0) converges weakly to a tight

limit, as elements in l∞(H). This is for example satisfied for function classes that are Hölder continuous

(see Example 2.11.13 of van der Vaart and Wellner 2023 for more details).

Theorem 6. Let H be a P0-Donsker class with a square integrable envelope function M2. Assume ϕ is

four times continuously differentiable in a neighborhood of 1. Denote X ∗
P0

= argminx∈XEP0
[l(x, ξ)]. Then

we have that for δ(n) =
√
r/n,

√
n

Å
min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ))−min
x∈X

EP0
[l(x, ξ)]

ã
⇝ inf

x∈X∗
P0

G(x)−
√
r

2ϕ′′(1)
dm2,P0

(x),

and,

√
n

Å
min
x∈X

Rϕ

δ(n),P̂n
(l(x, ξ))−min

x∈X
EP0

[l(x, ξ)]

ã
⇝ inf

x∈X∗
P0

G(x) +

√
r

2ϕ′′(1)
m2,P0

(x),

where G(x) is a mean-zero Gaussian process with covariance

Cov(x1,x2) = Cov(l(x1, ξ), l(x2, ξ)).

As shown in Theorem 6, at a rate of 1/
√
n, the gap between the dual DRO upper and lower bounds with

the true nominal optimal value converges consistently to zero. Moreover, the bias term is the evaluation

of the Gaussian process (which is also present in SAA and primal DRO), and the extra maxiance term

(or the second dual moment) on the set of optimal solutions of the true nominal problem (1). This is

slightly different from the bias term of the primal DRO, where the standard deviation is the extra term in

the bias besides the Gaussian process (see Duchi et al. 2021). As mentioned in Yitzhaki and Schechtman

[2012] (identity (2.21)), the maxiance is always dominated by the standard deviation. This is especially

true in the case of a heavy-tailed distribution, where the variance is much larger than the maxiance.
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Therefore, dual DRO typically has a smaller bias than the primal DRO.

We note that as a consequence of Theorem 6, if X ∗
P0

= {x∗}, then we can approximate the asymptotic

probability that minx∈X ρ
ϕ

δ(n),P̂n
(l(x, ξ)) and minx∈X Rϕ

δ(n),P̂n
(l(x, ξ)) are respectively one-sided lower

and upper bound for minx∈X EP0
[l(x, ξ)], with a gaussian distribution. Indeed, let Φ denote the standard

normal distribution function, we have that

lim
n→∞

P
Å
min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ)) ≤ min
x∈X

EP0
[l(x, ξ)]

ã
= Φ

Å √
r

2ϕ′′(1)

dm2,P0
(x∗)

σP0
(x∗)

ã
(24)

lim
n→∞

P
Å
min
x∈X

EP0
[l(x, ξ)] ≤ min

x∈X
Rϕ

δ(n),P̂n
(l(x, ξ))

ã
= Φ

Å √
r

2ϕ′′(1)

m2,P0(x
∗)

σP0
(x∗)

ã
(25)

Since x∗ is an unknown quantity, an explicit calculation of (24) and (25) will require a consistent estimator

of x∗, for example the solution of SAA based on a second independent sample. In Section EC.2, we show

that it is also possible to let r depend on the data, such that the probability (24) and (25) are equal

to some confidence parameter α, as n → ∞ (although this does require first estimating x∗ using half of

the data). If X ∗
P0

contains more than one solution, then the non-centered Gaussian process in Theorem

6 becomes hard to evaluate. In this case, we can still obtain a lower bound on the probability of

minx∈X ρ
ϕ

δ(n),P̂n
(l(x, ξ)) ≤ minx∈X EP0

[l(x, ξ)], namely that for any x∗ ∈ X ∗
P0
,

lim
n→∞

P
Å
min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ)) ≤ min
x∈X

EP0
[l(x, ξ)]

ã
≥ Φ

Å √
r

2ϕ′′(1)

dm2,P0
(x∗)

σP0(x
∗)

ã
.

Finally, we note that an upper bound on minx∈X EP0
[l(x, ξ)] can always be obtained by selecting a feasible

solution x ∈ X , such as the one calculated from minx∈X ρ
ϕ

δ(n),P̂n
(l(x, ξ)), and then estimate EP0

[l(x, ξ)]

with a second independent sample.
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6 Conclusion

We developed the dual DRO model that is asymptotically equivalent to mean-maxiance regularization.

As illustrated with numerical example, dual DRO provides much more robustness against outliers than

ϕ-divergence DRO due to its maxiance regularization effect. This makes dual DRO a more attractive

model when used to address overfitting in empirical optimization. In addition, the dual DRO model

can also be generalized to a primal-dual DRO model, where both the variance and the maxiance are

regularized. Furthermore, We show that optimization of dual DRO models enjoys similar tractability

as ϕ-divergence DRO, and is moreover an estimator with a smaller bias for the nominal optimal value

infx∈X EP0 [l(x, ξ)].
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Appendix

EC.1 Proofs

Proof of Proposition 1. Since dom(ϕ) ⊂ [0,∞), we have that ϕ∗ is non-decreasing. We have that

ϕ∗(0) = − infx≥0 ϕ(x) = 0 and that ϕ∗(y) = supx≥0 yx− ϕ(x) ≥ y − ϕ(1) = y. If ϕ is twice continuously

differentiable at 1 with ϕ′′(1) > 0, then the first order condition y−ϕ′(x) = 0 of ϕ∗(y) is satisfied for y in

a neighbourhood of 0 = ϕ′(1). It then follows from the implicit function theorem that in a neighbourhood

of 0, there exists a continuously differentiable function z(y), such that z(0) = 1 and y − ϕ′(z(y)) = 0.

Therefore, in a neighbourhood of 0, we have that ϕ∗(y) = yz(y) − ϕ(z(y)), (ϕ∗)′(y) = z(y), (ϕ∗)′′(y) =

z′(y) = 1
ϕ′′(z(y)) , and (ϕ∗)′′′(y) = z′′(y) = − ϕ′′′(z(y))

(ϕ′′(z(y))3 .

Proof of Theorem 1. Following a similar argument as in Theorem 6.1 in Ben-Tal et al. [1991], we have

that

ρϕδ,p(X) = inf
∆y∈Rn

+

{
n∑
i=1

F i∆yi +
1

δ

n∑
i=1

∆xiϕ

Å
∆yi
∆xi

ã}
=

n∑
i=1

inf
∆yi≥0

F i∆yi +
1

δ
∆xiϕ

Å
∆yi
∆xi

ã
(∗)
=

∑
i:∆xi>0

inf
∆yi≥0

F i∆yi +
1

δ
∆xiϕ

Å
∆yi
∆xi

ã
=

∑
i:∆xi>0

inf
∆yi
∆xi

∈R+

ß
F i

∆yi
∆xi

+
1

δ
ϕ

Å
∆yi
∆xi

ã™
∆xi

=
∑

i:∆xi>0

1

δ
inf
t∈R+

{
δF it− (−ϕ)(t)

}
∆xi +

∑
i:∆xi=0

(−ϕ)∗(δF i)∆xi

=
1

δ

n∑
i=1

(−ϕ)∗(δF i)∆xi,

where at (∗) we used that if ∆xi = 0, then 0ϕ
Ä
∆yi
0

ä
= ∞ for all ∆yi ̸= 0, and thus the infimimum

is obtained at ∆yi = ∆xi = 0, where 0ϕ
(
0
0

)
= 0. By Proposition 1, we have that ϕ∗ is twice contin-

uously differentiable at 0, with ϕ∗(0) = 0, (ϕ∗)′(0) = 1 and (ϕ∗)′′(0) = 1
ϕ′′(1) . Moreover, we have that

(−ϕ)∗(−x) = −ϕ∗(−x). Therefore, using a second order Taylor expansion around 0, we obtain

ρϕδ,p(X) =
1

δ

n∑
i=1

(−ϕ)∗(δF i)∆xi

=
1

δ

n∑
i=1

ï
(−ϕ)∗(0) + (−ϕ)′∗(0)δF i +

1

2
(−ϕ)′′∗(0)δ2(F i)2 + o(δ2)(F i)

2

ò
∆xi

=

n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

(F i)
2∆xi + o(δ) ·

n∑
i=1

(F i)
2∆xi

=

n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

(F i)
2∆xi + o(δ)

= Ep[X]− δ

2ϕ′′(1)
Ep[min{X(1), X(2)}] + o(δ)
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=

Å
1− δ

2ϕ′′(1)

ã
Ep[X] +

δ

2ϕ′′(1)
m2,p(X) + o(δ).

Proof of Proposition 2. We have that

Rϕ
δ,p(X) =

1

(−ϕ)∗(δ)

n∑
i=1

(−ϕ)∗(δF i)∆xi

=
1

(−ϕ)∗(δ)

n∑
i=1

δF i∆xi −
1

2ϕ′′(1)
δ2F

2

i∆xi + o(δ2)

=
1

δ − 1
2ϕ′′(1)δ

2 + o(δ2)

n∑
i=1

δF i∆xi −
1

2ϕ′′(1)
δ2F

2

i∆xi + o(δ2)

=
1

1− 1
2ϕ′′(1)δ + o(δ)

n∑
i=1

F i∆xi −
1

2ϕ′′(1)
δF

2

i∆xi + o(δ)

=

n∑
i=1

F i∆xi +

(
1

1− 1
2ϕ′′(1)δ + o(δ)

− 1

)
n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

F
2

i∆xi + o(δ)

=

n∑
i=1

F i∆xi +

(
1

2ϕ′′(1)δ + o(δ)

1− 1
2ϕ′′(1)δ + o(δ)

)
n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

F
2

i∆xi + o(δ)

=

n∑
i=1

F i∆xi +

(
1 + o(1)

1− 1
2ϕ′′(1)δ + o(δ)

)
δ

2ϕ′′(1)

n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

F
2

i∆xi + o(δ)

=

n∑
i=1

F i∆xi + (1 + o(1))
δ

2ϕ′′(1)

n∑
i=1

F i∆xi −
δ

2ϕ′′(1)

n∑
i=1

F
2

i∆xi + o(δ)

=

n∑
i=1

F i∆xi +
δ

2ϕ′′(1)

(
n∑
i=1

F i∆xi − F
2

i∆xi

)
+ o(1) · δ

2ϕ′′(1)

n∑
i=1

F i∆xi + o(δ)

=

n∑
i=1

F i∆xi +
δ

2ϕ′′(1)

(
n∑
i=1

F i∆xi − F
2

i∆xi

)
+ o(δ)

= Ep[X] +
δ

2ϕ′′(1)
m2,p(X) + o(δ).

Proof of Theorem 2. Since δ1, δ2 → 0, we may assume without loss of generality, that δ1 ≤ 1. Follow-

ing the proof of Theorem 1, we have that

ρxp(X) = sup
q∈Pn


n∑
i=1

qixi −
δ1

2ϕ′′(1)

Ñ
n∑
j=i

qj

é2

∆xi −
1

δ2
piψ

Å
qi
pi

ã+ o(δ1).
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We have

n∑
i=1

Ñ
n∑
j=i

qj

é2

=

n∑
i=1

Ñ
n∑
j=i

pj +

n∑
j=i

qj − pj

é2

=

n∑
i=1

Ñ
n∑
j=i

pj

é2

+ 2

n∑
j=i

pj

n∑
k=i

qk − pk +

Ñ
n∑
j=i

qj − pj

é2

= −
n∑
i=1

Ñ
n∑
j=i

pj

é2

+ 2

n∑
j=i

pj

n∑
k=i

qk +

Ñ
n∑
j=i

qj − pj

é2

.

(EC.26)

Hence, we have that

ρxp(X) = sup
q∈Pn

n∑
i=1

qixi −
δ1

ϕ′′(1)

n∑
j=i

pj

n∑
k=i

qk∆xi −
1

δ2
piψ

Å
qi
pi

ã
− δ1

2ϕ′′(1)

Ñ
n∑
j=i

qj − pj

é2

∆xi

+
δ1

2ϕ′′(1)

Ñ
n∑
j=i

pj

é2

∆xi + o(δ1).

We note that the last two terms above do not depend on q. Hence, we examine only

sup
q∈Pn

n∑
i=1

qixi −
δ1

ϕ′′(1)

n∑
j=i

pj

n∑
k=i

qk∆xi −
1

δ2
piψ

Å
qi
pi

ã
− δ1

2ϕ′′(1)

Ñ
n∑
j=i

qj − pj

é2

∆xi

≜ sup
q∈Pn

E(q).

We have that each q ∈ Pn, and δ1 ≤ 1:

E(q) ≤ xmax +
δ1

ϕ′′(1)

n∑
i=1

∆xi +
2δ1
ϕ′′(1)

n∑
i=1

∆xi −
1

δ2

n∑
i=1

piψ

Å
qi
pi

ã
≤
Å
1 +

3

ϕ′′(1)

ã
xmax −

1

δ2

n∑
i=1

piψ

Å
qi
pi

ã
,

since
∑n
j=i pj

∑n
k=i qk ≤ 1 and

Ä∑n
j=i qj − pj

ä2
≤ 4, for all i = 1, . . . , n. On the other hand, we also

have E(p) ≥
∑n
i=1 pixi −

1
ϕ′′(1)xmax. Therefore, we have that for all δ2 > 0, if q ∈ Pn is any probability

vector such that

n∑
i=1

piψ

Å
qi
pi

ã
> δ2K,

where K > 0 is any constant (independent of δ1, δ2), such that

K ≥
Å
1 +

4

ϕ′′(1)

ã
xmax −

n∑
i=1

pixi. (EC.27)
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Then, for all such q, we would have E(q) ≤ E(p). Therefore, we may choose any positive constant K

that satisfies (EC.27), such that for all δ2 > 0, we can restrict q in a ψ-divergence ball without changing

the optimum:

sup
q∈Pn

E(q) = sup
q∈Pn:

∑n
i=1 piψ

Ä
qi
pi

ä
≤δ2K

E(q).

Our next step is to bound the quadratic term
∑n
i=1

Ä∑n
j=i qj − pj

ä2
∆xi of E(q) in the order of δ2. From

Lemma EC.1.1, it follows that for all q ∈ Pn such that
∑n
i=1 piψ

Ä
qi
pi

ä
≤ δ2K with δ2 sufficiently small,

then the following inequality holds for all i = 2, . . . , nÑ
n∑
j=i

qj − pj

é2

≤ (n− i)

n∑
j=i

(qj − pj)
2 ≤ n

n∑
j=1

(qj − pj)
2 ≤ n

n∑
j=1

(qj − pj)
2

pj
≤ 4ψ′′(1)nδ2K,

where we used Cauchy-Schwarz for the first inequality. Hence, we also have∣∣∣∣∣∣∣
δ1

2ϕ′′(1)

n∑
i=1

Ñ
n∑
j=i

qj − pj

é2

∆xi

∣∣∣∣∣∣∣ ≤
δ1

2ϕ′′(1)
4ψ′′(1)nδ2K

n∑
i=1

∆xi = 2
ψ′′(1)

ϕ′′(1)
nδ1δ2Kxmax

= O(δ1δ2 · n).

Thus, for all q ∈ Pn such that
∑n
i=1 piψ

Ä
qi
pi

ä
≤ δ2K, the following holds

E(q) =

n∑
i=1

qixi −
δ1

ϕ′′(1)

n∑
j=i

pj

n∑
k=i

qk∆xi −
1

δ2
piψ

Å
qi
pi

ã
+O(δ1δ2 · n)

≜ El(q) +O(δ1δ2 · n).

Hence, we have shown that

sup
q∈Pn:

∑n
i=1 piψ

Ä
qi
pi

ä
≤δ2K

E(q) = sup
q∈Pn:

∑n
i=1 piψ

Ä
qi
pi

ä
≤δ2K

El(q) +O(δ1δ2 · n).

We now work back towards

sup
q∈Pn:

∑n
i=1 piψ

Ä
qi
pi

ä
≤δ2K

El(q) = sup
q∈Pn

El(q). (EC.28)

Indeed, using the same argument before, we also have that

El(q) ≤ xmax +
1

ϕ′′(1)
xmax −

1

δ2

n∑
i=1

piψ

Å
qi
pi

ã
,

and El(p) ≥
∑n
i=1 pixi −

1
ϕ′′(1)xmax. Hence, our choice of K that satisfies (EC.27) also ensures (EC.28).
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We now examine:

sup
q∈Pn

El(q) = sup
q∈Pn

n∑
i=1

qixi −
δ1

ϕ′′(1)

n∑
j=i

pj

n∑
k=i

qk∆xi −
1

δ2
piψ

Å
qi
pi

ã
= sup

q∈Pn

n∑
i=1

Ñ
xi −

δ1
ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é
qi −

1

δ2
piψ

Å
qi
pi

ã
= inf
λ∈R

λ+ sup
q∈Rn

+

n∑
i=1

Ñ
xi −

δ1
ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj − λ

é
qi −

1

δ2
piψ

Å
qi
pi

ã
= inf
λ∈R

λ+
1

δ2

n∑
i=1

pi sup
qi∈R+

Ñ
δ2(xi − λ)− δ1δ2

ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é
qi
pi

− ψ

Å
qi
pi

ã
= inf
λ∈R

λ+
1

δ2

n∑
i=1

pi sup
t∈R+

Ñ
δ2(xi − λ)− δ1δ2

ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é
t− ψ (t)

= inf
λ∈R

λ+
1

δ2

n∑
i=1

piψ
∗

Ñ
δ2(xi − λ)− δ1δ2

ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é
.

(EC.29)

By proposition 1, we have that ψ∗(0) = 0, (ψ∗)′(0) = 1, (ψ∗)′′(0) = 1
ψ′′(1) and (ψ∗)′ is increasing around

zero due to convexity. With these properties, we use a similar argument of Proposition 2.1 in Ben-Tal

and Teboulle [2007] to show that we may restrict λ on any compact set [−b, b] with b sufficiently large

(see Lemma EC.1.2). This gives us

inf
λ∈[−b,b]

λ+
1

δ2

n∑
i=1

piψ
∗

Ñ
δ2

xi − λ− δ1
ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é .

Denote Bi(λ) ≜ xi − λ− δ1
ϕ′′(1)

∑i
j=1

∑n
k=j pk∆xj . Note that Bi(λ) is a continuous function of λ and is

thus bounded on a compact set λ ∈ [−b, b]. Therefore, by using a Taylor expansion of ψ∗ around zero,

we obtain

inf
λ∈[−b,b]

λ+
1

δ2

n∑
i=1

piψ
∗ (δ2Bi(λ)) = inf

λ∈[−b,b]
λ+

1

δ2

n∑
i=1

pi (δ2Bi(λ)) + pi
1

2ψ′′(1)
δ22(Bi(λ))

2 + o(δ22).

The above expression can be further expanded to

n∑
i=1

pixi −
δ1

ϕ′′(1)

n∑
i=1

Ñ
i∑

j=1

n∑
k=j

pk∆xj

é
pi +

1

2ψ′′(1)
inf

λ∈[−b,b]

n∑
i=1

piδ2(Bi(λ))
2 + o(δ2)

=

n∑
i=1

pixi −
δ1

ϕ′′(1)

n∑
i=1

Ñ
n∑
j=i

pj

é2

∆xi +
1

2ψ′′(1)
inf

λ∈[−b,b]

n∑
i=1

piδ2(Bi(λ))
2 + o(δ2),
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where

n∑
i=1

Ñ
n∑
j=i

pj

é2

∆xi =

n∑
i=1

Ñ
i∑

j=1

n∑
k=j

pk∆xj

é
pi,

follows from examining the derivations in (EC.26) and (EC.29). We expand δ2Bi(λ)
2, which is

δ2Bi(λ)
2 = δ2

Ñ
xi − λ− δ1

ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é2

= δ2(xi − λ)2 − 2δ1δ2(xi − λ)

Ñ
1

ϕ′′(1)

i∑
j=1

n∑
k=j

pk∆xj

é
+

δ2δ
2
1

(ϕ′′(1))2

Ñ
i∑

j=1

n∑
k=j

pk∆xj

é2

= δ2(xi − λ)2 +O(δ1δ2).

Therefore, we have that

inf
λ∈[−b,b]

n∑
i=1

piδ2(Bi(λ))
2 = δ2Varp(X) +O(δ1δ2),

by taking b sufficiently large such that
∑n
i=1 pixi ∈ [−b, b]. Hence, we obtain as a final expression

ρxp(X) = Ep[X] +
δ2

2ψ′′(1)
Varp(X)− δ1

2ϕ′′(1)

n∑
i=1

Ñ
n∑
j=i

pj

é2

∆xi + o(δ1) + o(δ2) +O(δ1δ2 · n)

= Ep[X] +
δ2

2ψ′′(1)
Varp(X)− δ1

2ϕ′′(1)
Ep

î
min{X(1), X(2)}

ó
+ o(δ1) + o(δ2) +O(δ1δ2 · n)

=

Å
1− δ1

2ϕ′′(1)

ã
Ep[X] +

δ2
2ψ′′(1)

Varp(X) +
δ1

2ϕ′′(1)
m2,p(X) + o(δ1) + o(δ2) +O(δ1δ2 · n).

Lemma EC.1.1. Suppose that ψ is a Csiszar ϕ-divergence function such that ψ is twice continuously

differentiable at 1 with ψ′′(1) > 0. Then, for any constant K > 0, there exists a δ0 > 0, such that for all

δ2 ≤ δ0, we have

n∑
i=1

piψ

Å
qi
pi

ã
≤ δ2K ⇒

n∑
i=1

pi

Å
qi
pi

− 1

ã2
≤ δ2K · 4ψ′′(1),

where we assume pmin := mini pi > 0.

Proof. Since ψ(1) = 0 and ψ′(1) = 0, a taylor expansion shows that

n∑
i=1

piψ

Å
qi
pi

ã
=

n∑
i=1

pi

ñ
ψ′′(1)

2

Å
qi
pi

− 1

ã2
+

Å
qi
pi

− 1

ã2
R2

Å
qi
pi

ãô
,

where limt→1R2(t) = 0. Then, for all q ∈ Pn such that
∑n
i=1 piψ

Ä
qi
pi

ä
≤ δ2K, we have that for all
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i = 1, . . . , n

piψ

Å
qi
pi

ã
≤

n∑
i=1

piψ

Å
qi
pi

ã
≤ δ2K.

Hence, for all i, we have

ψ

Å
qi
pi

ã
≤ δ2K/pi ≤ δ2K/pmin.

Since ψ is twice continuously differentiable around 1 with ψ′′(1) > 0, it follows from convexity that

ψ is strictly decreasing on [0, 1] and strictly increasing on [1,∞]. Hence, we have for any ϵ > 0, that

Mψ(ϵ) ≜ maxt∈[1−ϵ,1+ϵ] ψ(t) > 0. Therefore, for all δ2 > 0 such that δ2K/pmin < Mψ(ϵ), we have that

ψ

Å
qi
pi

ã
≤ δ2K/pmin ⇒

∣∣∣∣ qipi − 1

∣∣∣∣ ≤ ϵ, ∀i = 1, . . . , n.

Since limt→1R2(t) = 0, there exists an ϵ > 0, such that for all δ2 < Mψ(ϵ)pmin/K ≜ δ0, we have

n∑
i=1

piψ

Å
qi
pi

ã
≤ δ2K ⇒

∣∣∣∣ qipi − 1

∣∣∣∣ ≤ ϵ,∀i

⇒
∣∣∣∣R2

Å
qi
pi

ã∣∣∣∣ ≤ ψ′′(1)

4
,∀i.

Hence, for all δ2 ≤ δ0, we have

δ2K ≥
n∑
i=1

piψ

Å
qi
pi

ã
=

n∑
i=1

pi

Å
qi
pi

− 1

ã2 ïψ′′(1)

2
+R2

Å
qi
pi

ãò
≥
ï
ψ′′(1)

2
− ψ′′(1)

4

ò n∑
i=1

pi

Å
qi
pi

− 1

ã2
≥ ψ′′(1)

4

n∑
i=1

pi

Å
qi
pi

− 1

ã2
.

which gives

n∑
i=1

pi

Å
qi
pi

− 1

ã2
≤ δ2K · 4ψ′′(1).

Lemma EC.1.2. The following optimization problem

inf
λ∈R

λ+
1

δ2

n∑
i=1

piψ
∗

Ñ
δ2(xi − λ)− δ1δ2

ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj

é
,

can be restricted on a compact set of λ.

Proof. Examining the first-order condition of the above infimum gives that the optimal λ∗ must satisfy
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the if and only if condition

n∑
i=1

pi(ψ
∗)′

Ñ
δ2

Ñ
xi −

δ1
ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − λ∗

éé
= 1. (EC.30)

Let b be any number such that b > maxi∈[n] |xi − δ1
ψ′′(0)

∑i
j=1

∑n
k=j pk∆xj |. Suppose that any optimal

λ∗ satisfies λ∗ /∈ [−b, b]. If λ∗ ≥ 0, then we have

xi −
δ1

ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − λ∗ ≤ xi −
δ1

ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − b, ∀i = 1, . . . , n.

By the first order condition (EC.30) and the monotonicity of (ψ∗)′, we thus also have

n∑
i=1

pi(ψ
∗)′

Ñ
δ2

Ñ
xi −

δ1
ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − b

éé
≥

n∑
i=1

pi(ψ
∗)′

Ñ
δ2

Ñ
xi −

δ1
ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − λ∗

éé
= 1.

On the other hand, we have by the definition of b, that

xi −
δ1

ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − b ≤ 0,

which implies

n∑
i=1

pi(ψ
∗)′

Ñ
δ2

Ñ
xi −

δ1
ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − b

éé
≤ (ψ∗)′(0) = 1.

Hence, we have

n∑
i=1

pi(ψ
∗)′

Ñ
δ2

Ñ
xi −

δ1
ψ′′(0)

i∑
j=1

n∑
k=j

pk∆xj − b

éé
= 1,

which implies that b is optimal. Therefore, we may indeed restrict λ on a compact set [−b, b] with b

sufficiently large.

Proof of Proposition 3. Since Rϕ

δ(n),P̂n
(l(x, ξ)) = ρϕ

δ(n),P̂n
(l(x, ξ))δ(n)/(−ϕ)∗(δ(n)), it is sufficient to

examine only the measurability of minx∈X Rϕ

δ(n),P̂n
(l(x, ξ)). For ease of notation, we denote δn(ω) =

δ(ξ1(ω), . . . , ξn(ω)). Let Π(n) denote the set of all permutations of the set {1, . . . , n}. For any constant

c ∈ R, we have,ω : inf
x∈X

sup
q∈Mϕ

δn(ω)

n∑
i=1

qil(x, ξi(ω)) ≤ c


25



=
⋂
n≥1

⋃
x∈X

ω : sup
q∈Mϕ

δn(ω)

n∑
i=1

qil(x, ξi(ω)) ≤ c+
1

n


=
⋂
n≥1

⋃
x∈X

{
ω :

n∑
i=1

(−ϕ)∗
(
δ(ω) · n−i+1

n

)
(−ϕ)∗(δ(ω))

∆l(x, ξi(x)(ω)) ≤ c+
1

n

}

=
⋂
n≥1

⋃
σ∈Π(n)

⋃
x∈X

{
ω :

n∑
i=1

(−ϕ)∗
(
δ(ω) · n−i+1

n

)
(−ϕ)∗(δ(ω))

∆l(x, ξσ(i)(ω)) ≤ c+
1

n

}

∩
¶
ω : l(x, ξσ(1)(ω)) ≤ . . . ≤ l(x, ξσ(n)(ω))

©
,

where the set

⋃
x∈X

{
ω :

n∑
i=1

(−ϕ)∗
(
δ(ω) · n−i+1

n

)
(−ϕ)∗(δ(ω))

∆l(x, ξσ(i)(ω)) ≤ c+
1

n

}
∩
¶
ω : l(x, ξσ(1)(ω)) ≤ . . . ≤ l(x, ξσ(n)(ω))

©
,

is measurable, since the function l(x, ξ̃) is a Caratheodory function (hence its epigraph is a measurable

set-valued function) and X is a closed set (see Section 7.2.3 of Shapiro et al. 2009).

Proof of Theorem 5. We show the identity for ρϕ
δ(n),P̂n

, since the proof for Rϕ

δ(n),P̂n
is similar. Fix

x ∈ X and let l(x, ξ1(x)) ≤ · · · ≤ l(x, ξn(x)). Following the proof of Theorem 1, we have that for all

possible realisations ω ∈ Ω, that

ρϕ
δ(n),P̂n

(l(x, ξ))(ω) =
1

δ(n)(ω)

n∑
i=1

(−ϕ)∗
Å
δ(n)(ω)

n− i+ 1

n

ã
∆l(x, ξi(x)(ω))

=
1

δ(n)(ω)

n∑
i=1

Ç
δ(n)(ω)

n− i+ 1

n
− 1

2ϕ′′(1)

Å
δ(n)(ω)

n− i+ 1

n

ã2
+
(ϕ∗)′′′(ξ̃n)

6

Å
δ(n)(ω)

n− i+ 1

n

ã3å
∆l(x, ξi(x)(ω))

=
1

n

n∑
i=1

l(x, ξi(ω))−
δ(n)(ω)

2ϕ′′(1)

n∑
i=1

Å
n− i+ 1

n

ã2
∆l(x, ξi(x)(ω))

+

n∑
i=1

(ϕ∗)′′′(ξ̃n)(ω)

6
δ2(n)(ω)

Å
n− i+ 1

n

ã3
∆l(x, ξi(x)(ω)).

Hence, we have that ϵn(x)(ω) =
∑n
i=1

(ϕ∗)′′′(ξ̃n(ω))
6 δ2(n)(ω)

(
n−i+1
n

)3
∆l(x, ξi(x)(ω)), where ξ̃n(ω) ∈

[0, δ(n)(ω)]. Since ϕ∗ is smooth around zero, it’s third derivative is bounded in a neighbourhood of

zero. This means that there exists an ϵ0 > 0, such that for all ω such that δ(n)(ω) ≤ ϵ0, there exists a

constant C > 0 such that (ϕ∗)′′′(ξ̃n(ω))
6 ≤ C. Hence, for all such ω, we have that

sup
x∈X

1

δ(n)(ω)
|ϵn(x)(ω)| ≤ C · δ(n)(ω) sup

x∈X

n∑
i=1

n− i+ 1

n
∆l(x, ξi(x)(ω))

= C · δ(n)(ω) sup
x∈X

1

n

n∑
i=1

l(x, ξi(ω))
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≤ C · δ(n)(ω) 1
n

n∑
i=1

M2(ξi(ω)),

where the latter inequalities follow from the assumption. Now given any ϵ̃ > 0, we have the following

inequalities (note that ϵn(x) is measurable since it inherits the measurability of ρϕ
δ(n),P̂n

):

P0

Ç
sup
x∈fX

1

δ(n)
|ϵn(x)| > ϵ̃

å
≤ P0

Åß
sup
x∈X

1

δ(n)
|ϵn(x)| > ϵ̃

™
∩ {δ(n) ≤ ϵ0}

ã
+ P0

Åß
sup
x∈X

1

δ(n)
|ϵn(x)| > ϵ̃

™
∩ {δ(n) > ϵ0}

ã
.

Since δ(n)
P→ 0, we have that the second term vanishes as n → ∞. Hence, we only examine the first

term, and we have that

P∗
0

Åß
sup
x∈X

1

δ(n)
|ϵn(x)| > ϵ̃

™
∩ {δ(n) ≤ ϵ0}

ã
≤ P0

({
δ(n)

1

n

n∑
i=1

M2(ξi) >
ϵ̃

C

}
∩ {δ(n) ≤ ϵ0}

)

≤ P0

(
δ(n)

1

n

n∑
i=1

M2(ξi) >
ϵ̃

C

)
.

By assumption, EP0
[|M2(ξ)| < ∞. Hence, the law of large number and δ(n)

P→ 0 imply the convergence

in probability δ(n) 1n
∑n
i=1M2(ξi)

P→ 0, which then implies that supx∈X |ϵn(x)|/δ(n)
P→ 0.

Proof of Theorem 6. Let δ(n) =
√
r/n. Using Theorem 5, we have,

√
n
(
ρϕ
δ(n),P̂n

(l(x, ξ))− EP0 [l(x, ξ)]
)

=
√
n
Ä
EP̂n

(l(x, ξ))− EP0 [l(x, ξ)]
ä
−

√
r

2ϕ′′(1)
dm2,P̂n

(x) +
√
nϵn(x),

where supx∈X
√
n|ϵn(x)|

P∗

→ 0. Since H is P0-Donsker, we have that together with Lemma EC.1.8, the

following weak convergence of processes indexed by x ∈ X

√
n
(
ρϕ
δ(n),P̂n

(l(·, ξ))− EP0
[l(·, ξ)]

)
⇝ G(·)−

√
r

2ϕ′′(1)
dm2,P0

(·), in l∞(H).

Similarly, it follows from Theorem 5 that we also have the weak convergence

√
n
(
Rϕ

δ(n),P̂n
(l(·, ξ))− EP0

[l(·, ξ)]
)
⇝ G(·) +

√
r

2ϕ′′(1)
m2,P0

(·), in l∞(H).

Adopting the same notations as in Duchi et al. [2021], we let T (P) ≜ minx∈X EP[l(x, ξ)]. Using Proposition

1, we have that

min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ))−min
x∈X

EP0
[l(x, ξ)]

min
x∈X

max
q∈Mϕ

δ(n)

(−ϕ)∗(
√
r/n)√

r/n

n∑
i=1

qil(x, ξi)−min
x∈X

EP0
[l(x, ξ)]
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= max
q∈Mϕ

δ(n)

min
x∈X

(−ϕ)∗(
√
r/n)√

r/n

n∑
i=1

qil(x, ξi)−min
x∈X

EP0 [l(x, ξ)]

= max
Q∈Mϕ

δ(n)
(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
T (Q)− T (P0),

where we interchanged the minimum and maximum by applying the minimax theorem, which holds

since we have a convex-concave function in (x,q) on compact feasible sets. Moreover, we identified the

probability vector q ∈ Mϕ
δ(n) (as defined in (19)) with a measure Q =

∑n
i=1 qiιξi

and we denote the set

Mϕ
δ(n)(P̂n) ≜

{
n∑
i=1

qiιξi

∣∣∣∣∣ q ∈ Mϕ
δ(n)

}
,

where ιξi
denotes a Dirac measure.

Denote the influence function IF (x,P0) = l(x, ξ)− EP0
[l(x, ξ)] (see Lemma 17 of Duchi et al. 2021).

Following the proofs outlined by Duchi et al. [2021], we start with examining

(−ϕ)∗(
√
r/n)√

r/n

∣∣∣∣∣ max
Q∈Mϕ

δ(n)
(P̂n)

(T (Q)− T (P0))− max
Q∈Mϕ

δ(n)
(P̂n)

inf
x∈X∗

P0

EQ[IF (x,P0)]

∣∣∣∣∣
≤ sup

Q∈Mϕ
δ(n)

(P̂n)

∣∣∣∣∣ (−ϕ)∗(
√
r/n)√

r/n

Ç
T (Q)− T (P0)− inf

x∈X∗
P0

EQ[IF (x,P0)]

å∣∣∣∣∣
≜ sup

Q∈Mϕ
δ(n)

(P̂n)

|κn(Q)|.

Our first goal is to show that for any ϵ > 0,

lim sup
n→∞

P∗
0

Ñ
√
n sup

Q∈Mϕ
δ(n)

(P̂n)

|κn(Q)| ≥ ϵ

é
= 0. (EC.31)

To do this, we choose for any δ′ > 0, a sequence of measurable selection (see Lemma EC.1.6) Qn ∈
Mϕ

δ(n)(P̂n), such that |κ(Qn)| ≥ (1− δ′) supQ∈Mϕ
δ(n)

(P̂n)
|κn(Q)|. This gives the bound

P∗
0

Ñ
√
n sup

Q∈Mϕ
δ(n)

(P̂n)

|κn(Q)| ≥ ϵ

é
≤ P∗

0

(√
n|κn(Qn)| ≥ (1− δ′)ϵ

)
.

Therefore, it remains to show that
√
nκn(Qn)

P∗

→ 0. Viewing Qn as a mapping Qn : Ω → l∞(H), we have

that by Lemma EC.1.5, that all subsequences of
√
n(Qn−P0) are asymptotically tight and measurable. It

follows from the Prohorov’s theorem (van der Vaart and Wellner 2023) that every subsequence of
√
n(Qn−

P0) has a further subsequence that converges to a weak limit. Hence, we may choose a subsequence such

that
√
n(m)(Qn(m) − P0)⇝ Z for a tight weak limit Z and that

lim sup
n→∞

P∗
0

(√
n|κn(Qn)| ≥ (1− δ′)ϵ

)
= lim
m→∞

P∗
0

(»
n(m)|κn(m)(Qn(m))| ≥ (1− δ′)ϵ

)
= 0,

where the latter is obtained by applying the functional delta theorem (Theorem 1, Römisch 2006) to
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conclude that »
n(m)

Ç
T (Qn(m))− T (P0)− inf

x∈X∗
P0

EQn(m)
[IF (x,P0)]

å
P∗

→ 0.

Then, we have that

√
n

Å
min
x∈X

ρϕ
δ(n),P̂n

(l(x, ξ))−min
x∈X

EP0
[l(x, ξ)]

ã
=

√
n

(
max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
T (Q)− T (P0)

)

=
√
n max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
(T (Q)− T (P0)) +

√
n

Ç
(−ϕ)∗(

√
r/n)√

r/n
− 1

å
T (P0)

(∗)
=

√
n max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
inf

x∈X∗
P0

EQ[IF (x,P0)]−
√
r

2ϕ′′(1)
T (P0) + op(1)

(∗∗)
= inf

x∈X∗
P0

√
n max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
EQ[IF (x,P0)]−

√
r

2ϕ′′(1)
T (P0) + op(1)

= inf
x∈X∗

P0

√
n max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
(EQ[l(x, ξ)]− EP0

[l(x, ξ)])−
√
r

2ϕ′′(1)
T (P0) + op(1)

= inf
x∈X∗

P0

√
n

(
max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
EQ[l(x, ξ)]− EP0

[l(x, ξ)]

)

+
√
n

Ç
1− (−ϕ)∗(

√
r/n)√

r/n

å
EP0 [l(x, ξ)]−

√
r

2ϕ′′(1)
T (P0) + op(1),

where for (∗) we used
√
n

Å
(−ϕ)∗(

√
r/n)√

r/n
− 1

ã
= −

√
r

2ϕ′′(1) + o(1) and (EC.31), and for (∗∗) we used the

minimax theorem to interchange the sup-inf. Since for any x ∈ X ∗
P0
, we have EP0

[l(x, ξ)] = T (P0), we

have that the above is equal to

inf
x∈X∗

P0

√
n

(
max

Q∈Mϕ
δ(n)

(P̂n)

(−ϕ)∗(
√
r/n)√

r/n
EQ[l(x, ξ)]− EP0

[l(x, ξ)]

)
+

√
r

2ϕ′′(1)
T (P0)−

√
r

2ϕ′′(1)
T (P0) + op(1)

⇝ inf
x∈X∗

P0

G(x)−
√
r

2ϕ′′(1)
dm2,P0(x),

where for the latter convergence we also used that infimum operator is continuous with respect to the

supremum norm, and thus we may apply the continuous mapping theorem. Indeed, for any f, g ∈ l∞(H)

such that suph∈H |(f − g)(h)| < ϵ, we have that | infh∈H∗ f(h)− infh∈H∗ g(h)| ≤ suph∈H |(f − g)(h)| ≤ ϵ,

where H∗ = {l(x, .) : x ∈ X ∗
P0
} ⊂ H.

Similarly, we have

√
n

Å
min
x∈X

Rϕ

δ(n),P̂n
(l(x, ξ))−min

x∈X
EP0

[l(x, ξ)]

ã
=

√
n max

Q∈Mϕ
δ(n)

(P̂n)
T (Q)− T (P0)
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=
√
n max

Q∈Mϕ
δ(n)

(P̂n)
inf

x∈X∗
P0

EQ[IF (x,P0)] + op(1)

= inf
x∈X∗

P0

√
n max

Q∈Mϕ
δ(n)

(P̂n)
EQ[IF (x,P0)] + op(1)

= inf
x∈X∗

P0

√
n

(
max

Q∈Mϕ
δ(n)

(P̂n)
EQ[l(x, ξ)]− EP0

[l(x, ξ)]

)
+ op(1)

⇝ inf
x∈X∗

P0

G(x) +

√
r

2ϕ′′(1)
m2,P0

(x).

The proof of above theorems are supplemented with a couple of technical Lemmas.

Lemma EC.1.3. Let ϕ be four-times continuously differentiable around 1 and q ∈ Mϕ
δ(n), where Mϕ

δ(n)

is the set defined in (19). Suppose δ(n) =
√
r/n. Then, we have that for any i =, 1 . . . , n,

n
√
n

∣∣∣∣qi − 1

n

∣∣∣∣ ≤ √
r

2ϕ′′(1)
+ o(1).

Proof. Fix i ∈ [n]. By definition of Mhδ(n)(p̂) (see definition in (17)), we have that

qi ≤ hδ(n)(1/n) =
(−ϕ)∗(δ(n)1/n)
(−ϕ)∗(δ(n))

=
(−ϕ)∗

(√
r
n

1
n

)
(−ϕ)∗

(√
r
n

) =

√
r
n

1
n − 1

2ϕ′′(1)
r
n

1
n2 +O( r

√
r

n4
√
n
)√

r
n − 1

2ϕ′′(1)
r
n +O( rn

√
r
n )

=

1
n − 1

2ϕ′′(1)

√
r
n

1
n2 +O( rn4 )

1− 1
2ϕ′′(1)

√
r
n +O( rn )

.

Hence,

qi −
1

n
≤ 1

1− 1
2ϕ′′(1)

√
r
n +O( rn )

Å
1

2ϕ′′(1)

1

n

…
r

n

Å
1− 1

n

ã
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n2

)ã
=

√
r

2ϕ′′(1)

1

n
√
n
+ o

Å
1

n
√
n

ã
.

On the other hand, we have

qi = 1−
∑
j ̸=i

qj ≥ 1− hδ(n)

Ñ∑
j ̸=i

1/n

é
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(−ϕ)∗
(√

r
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(
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n

))
(−ϕ)∗

(√
r
n

)
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√
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1− 1

n
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− 1
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r
n

(
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r
n

√
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r
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r
n

√
r
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Ä
r2

n2

ä
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n

)
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√
r
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)2 − ϕ′′′(1)
(ϕ′′(1))3

r
n
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n

)3
+ o
Ä
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n
√
n

ä
1− 1

2ϕ′′(1)

√
r
n − ϕ′′′(1)

(ϕ′′(1))3
r
n + o

Ä
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n
√
n
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30



Hence,

qi −
1

n
≥
Å
1− 1

n

ã
−

(
1− 1

n

)
− 1

2ϕ′′(1)

√
r
n
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n

)2 − ϕ′′′(1)
(ϕ′′(1))3

r
n
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n

)3
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Ä

r2

n
√
n

ä
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2ϕ′′(1)

√
r
n − ϕ′′′(1)

(ϕ′′(1))3
r
n + o

Ä
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n
√
n

ä
=

1

1 + o (1)

Ç
− 1

2ϕ′′(1)

…
r

n

1

n

Å
1− 1

n

ã
− ϕ′′′(1)

(ϕ′′(1))3
r

n

Å
1− 1

n

ãÇ
1−
Å
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n

ã2å
+ o

Å
r2

n
√
n

ãå
= (1 + o(1))

Å
− 1
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…
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n

1

n

Å
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ã
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(ϕ′′(1))3
r

n2

Å
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n

ãÅ
2− 1

n

ã
+ o

Å
r2

n
√
n

ãã
= (1 + o(1))

Å
− 1

2ϕ′′(1)

…
r

n

1

n

Å
1− 1

n

ã
+ o

Å
1

n
√
n

ãã
= −

√
r

2ϕ′′(1)

1

n
√
n
+ o

Å
1

n
√
n

ã
.

Hence, we have shown that

n
√
n

∣∣∣∣qi − 1

n

∣∣∣∣ ≤ √
r

2ϕ′′(1)
+ o(1).

Lemma EC.1.4. Let ϕ be four times continuously differentiable around 1. Suppose δ(n) =
√
r(ξ1, . . . , ξn)/n

where r(ξ1, . . . , ξn)
P→ r0 for some r0 > 0 and r(ξ1(ω), . . . , ξn(ω)) > 0,∀ω ∈ Ω,∀n ≥ 1. Then, we have

that any q ∈ Mϕ
δ(n) satisfies

n
√
n

∣∣∣∣qi − 1

n

∣∣∣∣ ≤ √
r(ξ1, . . . , ξn)

2ϕ′′(1)
+ op(1).

Proof. Following the proof of lemma EC.1.3, we have that

n
√
n

Å
qi −

1

n

ã
≤ 1

1 + op(1)

Ç√
r(ξ1, . . . , ξn)

2ϕ′′(1)

Å
1− 1

n

ã
+O

Å
r(ξ1, . . . , ξn)√

n

ãå
,

and that

n
√
n

Å
qi −

1

n

ã
≥ 1

1 + op (1)

Ç
−
√
r(ξ1, . . . , ξn)

2ϕ′′(1)

Å
1− 1

n

ã
− ϕ′′′(1)

(ϕ′′(1))3
r(ξ1, . . . , ξn)√

n

Å
1− 1

n

ãÅ
2− 1

n

ã
+ op(1)

å
.

Hence, an application of continuous mapping theorem and Slutsky’s theorem gives that

n
√
n

∣∣∣∣qi − 1

n

∣∣∣∣ ≤ √
r(ξ1, . . . , ξn)

2ϕ′′(1)
+ op(1).

Recall that we defined the function class H = {x ∈ X : l(x, ξ) : Ω → R}. For any h ∈ H, we denote

h(ξ) = l(x, ξ).
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Lemma EC.1.5. Let H be P0-Donsker with L2-integrable envelope M2 : Ω → R, i.e. EP0
[M2

2 (ξ)] < ∞
and |l(x, ξ(ω))| ≤ M2(ξ(ω)), for all ω ∈ Ω. Suppose δ(n) =

√
r(ξ1, . . . , ξn)/n where r(ξ1, . . . , ξn)

P→ r0

for some r0 > 0 and r(ξ1(ω), . . . , ξn(ω)) > 0,∀ω ∈ Ω,∀n ≥ 1. Then, for any sequence Qn ∈ Mϕ
δ(n)(P̂n),

we have that the sequence of mapping
√
n(Qn − P0) : Ω → l∞(H) is asymptotically tight.

Proof. By Theorem 1.5.7 of van der Vaart and Wellner [2023], we have that
√
n(Qn−P0) is asymptotically

tight if and only if (i). the marginal
√
n(Qn−P0)h is asymptotically tight for all h ∈ H, (ii). There exists

a semi-metric ∥.∥ on H such that (H, ∥.∥) is totally bounded, and (iii)
√
n(Qn − P0) is asymptotically

uniformly equicontinuous in probability (with respect to the semi-metric ∥.∥), which means that for all

ϵ > 0, we have (where P∗
0 denotes the outer probability)

lim sup
δ→0,n→∞

P∗
0

Ç
sup

∥h−h′∥<δ

∣∣√n(Qn − P0)(h− h′)
∣∣ > ϵ

å
= 0.

We note that for any semi-metric ∥.∥ on H, we have

lim sup
δ→0,n→∞

P∗
0

Ç
sup

∥h−h′∥<δ

∣∣√n(Qn − P0)(h− h′)
∣∣ > ϵ

å
≤ lim sup
δ→0,n→∞

P∗
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Ç
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å
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0

Ç
sup

∥h−h′∥<δ

∣∣∣√n(P̂n − P0)(h− h′)
∣∣∣ > ϵ/2

å
.

By assumption, we have that H is P0-Donsker, which means that
√
n(P̂n − P0)⇝ G, where G is a tight

Gaussian limit. By Example 1.5.10 in van der Vaart and Wellner [2023], this implies that
√
n(P̂n − P0)

is asymptotically uniformly equicontinuous in probability, with respect to the L2 semi-metric ∥.∥2, and
that (H, ∥.∥2) is also totally bounded. Therefore, we may take the L2 semi-metric and conclude that the

second term above vanishes as δ → 0, n → ∞. Therefore, we examine only the first term. We have that

for any ϵ > 0,

P∗
0

Ç
sup

∥h−h′∥<δ

∣∣∣√n(Qn − P̂n)(h− h′)
∣∣∣ > ϵ

å
= P∗

0

(
sup

∥h−h′∥<δ

∣∣∣∣∣√n
n∑
i=1

(qi,n − 1

n
)(h(ξi)− h′(ξi))

∣∣∣∣∣ > ϵ

)

≤ P∗
0

Ñ
sup

∥h−h′∥<δ

∣∣∣∣∣∣n
Ã

n∑
i=1

(qi,n − 1

n
)2

Ã
1

n

n∑
i=1

(h(ξi)− h′(ξi))
2

∣∣∣∣∣∣ > ϵ

é
.

Now, since Qn ∈ Mϕ
δ(n)(P̂n), we have by Lemma EC.1.4 that for all ω ∈ Ω,

n∑
i=1

Å
qi,n(ω)−

1

n

ã2
≤

n∑
i=1

1

n3

Ç√
r(ξ1(ω), . . . , ξn(ω))

2ϕ′′(1)
+ en(ω)

å2

=
1

n2

Ç√
r(ξ1(ω), . . . , ξn(ω))

2ϕ′′(1)
+ en(ω)

å2

=
1

n2

Å
r(ξ1(ω), . . . , ξn(ω))

4ϕ′′(1)2
+ ẽn(ω)

ã
.
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where en, ẽn
P→ 0. This gives that

n

Ã
n∑
i=1

Å
qi,n(ω)−

1

n

ã2
≤
 
r(ξ1(ω), . . . , ξn(ω))

4ϕ′′(1)2
+ ẽn(ω).

Since the right-hand side is a random variable that converges in probability to
√
r0/2ϕ

′′(1), it is uniformly

tight. Hence, for any ϵ̃ > 0, there exists a constant M > 0 such that for all n ≥ 1, we have

P∗
0

Ñ
n

Ã
n∑
i=1

Å
qi,n − 1

n

ã2
≤M

é
≥ P0

Ç 
r(ξ1, . . . , ξn)

4ϕ′′(1)2
+ ẽn ≤M

å
≥ 1− ϵ̃.

Hence, we have that for any ϵ̃ > 0,

P∗
0

Ñ
sup

∥h−h′∥<δ

∣∣∣∣∣∣n
Ã

n∑
i=1

(qi,n − 1

n
)2

Ã
1

n

n∑
i=1

(h(ξi)− h′(ξi))
2

∣∣∣∣∣∣ > ϵ

é
≤ P∗

0

Ñ sup
∥h−h′∥<δ

∣∣∣∣∣∣
Ã

1

n

n∑
i=1

(h(ξi)− h′(ξi))
2

∣∣∣∣∣∣ > ϵ/M

 ∩

n
Ã

n∑
i=1

(qi,n − 1

n
)2 ≤M


é

+ ϵ̃

≤ P∗
0

Ñ
sup

∥h−h′∥<δ

∣∣∣∣∣∣
Ã

1

n

n∑
i=1

(h(ξi)− h′(ξi))
2

∣∣∣∣∣∣ > ϵ/M

é
+ ϵ̃.

Finally, the above outer probability vanishes as n → ∞, δ → 0, due to the assumption that H is P0-

Donsker and that we may take ∥.∥ to be the L2 semi-metric. This proves the equi-continuity.

Now let h ∈ H. It only remains to show that the marginal
√
n(Qn−P0)h is also asymptotically tight.

Since
√
n(Qn − P0)h is a real-valued sequence, it is sufficient to show that for any ϵ > 0, there exists a

constant M0 > 0, such that lim infn→∞(P0)∗(|
√
n(Qn − P0)h| ≤M0) ≥ 1− ϵ. We have that

√
n(Qn − P0)h =

√
n(Qn − P̂n + P̂n − P0)h

=
√
n

n∑
i=1

Å
qi,n − 1

n

ã
h(ξi) +

√
n

(
1

n

n∑
i=1

h(ξi)− EP0
[h(ξ)]

)
.

We examine the first sequence
√
n
∑n
i=1

(
qi,n − 1

n

)
h(ξi). Invoking Lemma EC.1.4 again gives that for all

ω ∈ Ω, ∣∣∣∣∣√n
n∑
i=1

Å
qi,n(ω)−

1

n

ã
h(ξi(ω))

∣∣∣∣∣ ≤
Ç√

r(ξ1(ω), . . . , ξn(ω))

2ϕ′′(1)
+ en(ω)

å
1

n

n∑
i=1

|h(ξi(ω))|.

Hence, we have that for all ω:

√
n|(Qn(ω)− P0)h| ≤

Ç√
r(ξ1(ω), . . . , ξn(ω))

2ϕ′′(1)
+ en(ω)

å
1

n

n∑
i=1

|h(ξi(ω))|

+
√
n

∣∣∣∣∣ 1n
n∑
i=1

h(ξi)− EP0
[h(ξ)]

∣∣∣∣∣
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Now, since EP0
|h(ξ)| <∞ due to EP0

h2(ξ) <∞, we have thatÇ√
r(ξ1, . . . , ξn)

2ϕ′′(1)
+ en

å
1

n

n∑
i=1

|h(ξi)|
P→

√
r0

2ϕ′′(1)
EP0 |h(ξ)|.

Furthermore, the central limit theorem and continuous mapping theorem implies that

√
n

∣∣∣∣∣ 1n
n∑
i=1

h(ξi)− EP0 [h(ξ)]

∣∣∣∣∣⇝ |N(0,VarP0(h(ξ)))|.

Hence, Slutsky’s theorem implies thatÇ√
r(ξ1, . . . , ξn)

2ϕ′′(1)
+ en

å
1

n

n∑
i=1

|h(ξi)|+
√
n

∣∣∣∣∣ 1n
n∑
i=1

h(ξi)− EP0
[h(ξ)]

∣∣∣∣∣
⇝ |N(0,VarP0

(h(ξ)))|+
√
r0

2ϕ′′(1)
EP0

|h(ξ)|.

Hence, the above sequence of measurable functions is weakly convergent and thus it is an uniformly tight

sequence, which means that for any ϵ > 0, there exists a constant M̃ > 0, such that for all n ≥ 1,

(P0)∗

(∣∣∣∣∣√n
n∑
i=1

Å
qi,n − 1

n

ã
h(ξi)

∣∣∣∣∣ ≤M0

)

≥ P0

(Ç√
r(ξ1, . . . , ξn)

2ϕ′′(1)
+ en

å
1

n

n∑
i=1

|h(ξi)|+
√
n

∣∣∣∣∣ 1n
n∑
i=1

h(ξi)− EP0
[h(ξ)]

∣∣∣∣∣ ≤M0

)
≥ 1− ϵ.

Hence, we may also conclude that
√
n(Qn − P0)h is asymptotically tight.

Lemma EC.1.6. Let ξn = (ξ1, . . . , ξn) be i.i.d. random vectors and let δ(ξn) : Ω → R>0 be a measurable

function. For any ϵ > 0, there exists a measurable selection q(ω) : Ω → Mϕ

δ(ξn)
, such that the associated

random measure Qn =
∑n
i=1 qi(ω)ιξi

satisfies

|κ(Qn)| ≥ (1− ϵ) sup
Q∈Mϕ

δ(ξn)
(P̂n)

|κ(Q)|,

for all ω ∈ Ω, where κ(Q) = T (Q)− T (P0)− infx∈X∗
P0
EQ[IF (x,P0)], X ∗

P0
= argminx∈XEP0

[l(x, ξ)].

Proof. We apply Theorem 4.10 in Rieder [1978]. By definition, we have that κ(Q) = infx∈X
∑n
i=1 qil(x, ξi)−

infx∈X∗
P0

∑n
i=1 qil(x, ξi). Hence, we define a function

u : Ω× Rn → R

(ω,q) 7→
∣∣∣∣∣ infx∈X

n∑
i=1

qil(x, ξi(ω))− inf
x∈X∗

P0

n∑
i=1

qil(x, ξi(ω))

∣∣∣∣∣ .
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We define

D =

(ω,q)

∣∣∣∣∣∣
n∑
i=1

qi = 1, qi ≥ 0,
∑
j∈J

qj ≤
(−ϕ)∗

Ä
δ(ξn(ω)) ·

|J|
n

ä
(−ϕ)∗(δ(ξn)(ω))

,∀J ⊂ [n]

 .

We note that D ∈ F ×B(Rn), since all constraint functions in D are (separable) measurable functions in

the variables (ω,q). Moreover, the section set D(ω) = {q ∈ Rn : q ∈ Mϕ

δ(ξn)(ω)
} is a subset of Rn and

thus has a countable dense subset, for all ω ∈ Ω. Finally, we note that u is measurable in ω for each q, and

continuous in q for each ω. Indeed, measurability follows from the fact that l is a Carathéodory function.

To show continuity, it suffices to show that for each ω, the function q 7→ infx∈X
∑n
i=1 qil(x, ξi(ω)) is

continuous (the case for q 7→ infx∈X∗
P0

∑n
i=1 qil(x, ξi(ω)) is identical). Indeed,∣∣∣∣∣ infx∈X

n∑
i=1

q1,il(x, ξi(ω))− inf
x∈X

n∑
i=1

q2,il(x, ξi(ω))

∣∣∣∣∣
≤ sup

x∈X

∣∣∣∣∣
n∑
i=1

(q1,i − q2,i)l(x, ξi(ω))

∣∣∣∣∣
≤ max

x∈X ,i=1,...,n
|l(x, ξi(ω))| · ∥q1 − q2∥1.

Since X is assumed to be compact and l(., ξi(ω)) is continuous for all i, the maximum exists. Therefore, u

is a Carathéodory function and thus is measurable with respect to the product sigma-algebra F ×B(Rn)
(Theorem 7.36, Shapiro et al. 2009). Since D is a measurable set, it is also measurable with respect to

the restricted sigma-algebra imposed on D. Therefore, the conditions of Theorem 4.10 in Rieder [1978]

are satisfied and a measurable selection exists.

Lemma EC.1.7. Let X1, . . . , Xn be i.i.d. samples of a measurable random variable X with EP[X
2] <∞.

Denote the order statistics X(1) ≤ X(2) ≤ . . . ≤ X(n). Define ∆X(1) = X(1), ∆X(i) = X(i) −X(i−1) for

i = 2, . . . , n. Then, we have that

n∑
i=1

Å
n− i+ 1

n

ã2
∆X(i)

P→ EP[min{X1, X2}].

Proof. We have that

n∑
i=1

Å
n− i+ 1

n

ã2
∆X(i) =

1

n2

∑
1≤i≤j≤n

min{Xi, Xj}

=
1

n2

n∑
i=1

Xi +
2

n2

∑
i<j

min{Xi, Xj}

=
1

n2

n∑
i=1

Xi +
n− 1

n

2

n(n− 1)

∑
i<j

min{Xi, Xj}.

We note that 1
n2

∑n
i=1Xi

P→ 0 and 2
n(n−1)

∑
i<j min{Xi, Xj}

P→ EP[min{X1, X2}] by Theorem 12.3 of

van der Vaart [1998] for U-statistics. Hence, the statement follows.
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We recall the notation of the dual second moment that is evaluated using two i.i.d. random variable

ξ(1), ξ(2) : dm2,P(x) = EP×P[min{l(x, ξ(1), l(x, ξ(2)}].

Lemma EC.1.8. Let H = {l(x, .) | x ∈ X} be a Donsker class with a square integrable envelope M2.

Then, by viewing the second dual moment dm2,P0
(.),dm2,P̂n

(.) as a mapping in l∞(H), we have that

dm2,P̂n
(.)⇝ dm2,P0

(.), in l∞(H). (EC.32)

Proof. Since H is Donsker, we have that by viewing the empirical measure P̂n as a mapping in l∞(H),

that

√
n(P̂n − P0)⇝ G,

where G is a tight, measurable Gaussian process in l∞(H). By Example 1.5.10 of van der Vaart and

Wellner [2023], it follows that under the L1 semi-metric ρ1,P0
(x,y) = EP0

[|l(x, ξ) − l(y, ξ)|], H is to-

tally bounded. We now show (EC.32) using Theorem 1.5.4 of van der Vaart and Wellner [2023]. The

convergence of the marginals follows from Lemma EC.1.7. To establish asymptotic tightness, we use

theorem 1.5.7 of van der Vaart and Wellner [2023] and show that dm2,P̂n
(.) is asymptotically uniformly

ρ1-equicontinuous in probability. Indeed, we note that for any x,y ∈ X∣∣∣dm2,P̂n
(x)− dm2,P̂n

(y)
∣∣∣

=

∣∣∣∣∣∣ 1n2
n∑
i=1

n∑
j=1

min{l(x, ξi), l(x, ξj)} −min{l(y, ξi), l(y, ξj)}

∣∣∣∣∣∣
≤ 1

n2

n∑
i=1

n∑
j=1

max
{
|l(x, ξi)− l(y, ξi)|, |l(x, ξj)− l(y, ξj)|

}
≤ 1

n2

n∑
i=1

n∑
j=1

|l(x, ξi)− l(y, ξi)|+ |l(x, ξj)− l(y, ξj)|

=
2

n

n∑
i=1

|l(x, ξi)− l(y, ξi)| = 2ρ1,P̂n
(x,y).

Hence, for any n, ϵ, δ, we have

P∗
Ç

sup
ρ1,P0 (x,y)<δ

∣∣∣dm2,P̂n
(x)− dm2,P̂n

(y)
∣∣∣ > ϵ

å
≤ P∗

Ç
sup

ρ1,P0 (x,y)<δ

ρ1,P̂n
(x,y) >

ϵ

2

å
.

Now, we note that since H is Donsker, it is certainly Glivenko-Cantelli. Since Glivenko-Cantelli is

preserved under continuous mapping of multiple function classes (Theorem 2.10.5, van der Vaart and

Wellner 2023), we have that

sup
x,y

∣∣∣ρ1,P̂n
(x,y)− ρ1,P0

(x,y)
∣∣∣→ 0,
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in outer probability. Hence, we have that for any δ < ϵ/2:

P∗
Ç

sup
ρ1,P0 (x,y)<δ

ρ1,P̂n
(x,y) >

ϵ

2

å
= P∗

Ç
sup

ρ1,P0 (x,y)<δ

ρ1,P̂n
(x,y)− ρ1,P0(x,y) + ρ1,P0(x,y) >

ϵ

2

å
≤ P∗

Ç
sup

ρ1,P0 (x,y)<δ

|ρ1,P̂n
(x,y)− ρ1,P0

(x,y)| > ϵ

2
− δ

å
≤ P∗

Ç
sup
x,y

|ρ1,P̂n
(x,y)− ρ1,P0(x,y)| >

ϵ

2
− δ

å
n→∞→ 0.

Hence, this establishes the equicontinuity in probability, and proves (EC.32).

Lemma EC.1.9. Let l(x, ξ̃) be a loss function that is continuous in x, for every ξ̃ ∈ Rnξ . Assume

we have a random vector ξ taking values in ξ̃1, . . . , ξ̃n ∈ Rnξ , with probability p = (p1, . . . , pn). Then,

for any upper-semicontinuous concave distortion function h : [0.1] → [0, 1] (non-decreasing, h(0) = 0,

h(1) = 1, we have that the rank-dependent evaluation

Rh,p(x) ≜
n∑
i=1

h

Ñ
n∑
j=i

pj(x)

é
∆l(x, ξ̃i(x)),

is continuous in x.

Proof. Using the dual representation of rank-dependent model (see Denneberg 1994), we have that

Rh,p(x) = max
q∈Mh(p)

n∑
i=1

qil(x, ξ̃i),

where

Mh(p) =

{
q ∈ Rn

∣∣∣∣∣ q ≥ 0,

n∑
i=1

qi = 1,
∑
i∈J

qi ≤ h

(∑
i∈J

pi

)
,∀J ⊂ [n]

}
.

Since h is upper semi-continuous, and Mh(p) is a set of probability vectors, it follows that Mh(p) is

compact. Moreover, the function (q,x) 7→
∑n
i=1 qil(x, ξ̃i) is jointly continuous. Hence, continuity of

Rh,p(x) follows from an application of the Berge’s maximum theorem (Berge 1963).

EC.2 Details on Dual DRO Confidence Bounds

To construct dual DRO confidence bounds, we can split the data (ξ1, . . . , ξn) in half: (ξ1, . . . , ξn/2) and

(ξ′1 . . . , ξ
′
n/2), and use the first half to obtain a consistent empirical estimator x̂n/2 of the optimal solution

x∗. Then, with the second half of the sample which is independent from the first, we can compute the

37



following empirical estimator»
r(ξ1, . . . , ξn) =

2Φ−1(α)ϕ′′(1)

…
1
n/2

∑n/2
i=1

Ä
l(x̂n/2, ξ

′
i)− 1

n/2

∑n/2
i=1 l(x̂n/2, ξ

′
i)
ä2

∑n/2
i=1

Ä
n/2+i−1
n/2

ä2
∆l(x̂n/2, ξ

′
(i))

,

where 0 < l(x̂n/2, ξ
′
(1)) ≤ . . . ≤ l(x̂n/2, ξ

′
(n/2)). By the law of large number, Lemma EC.1.7 and continuous

mapping theorem, we have that
√
r(ξ1, . . . , ξn) converges in probability to

2Φ−1(α)ϕ′′(1)
√

VarP0 (l(x
∗,ξ))

EP0 [min{l(x∗,ξ(1)),l(x∗,ξ(2))}] .

The guarantee of the dual DRO confidence bounds is then formally stated in the following theorem.

Theorem 7. Let H be a P0-Donsker class with a square integrable envelope function M2. Assume ϕ is

four times continuously differentiable in a neighborhood of 1. If minx∈X EP0
[l(x, ξ)] has an unique solution

x∗, and we have a consistent estimator
√
r(ξ1, . . . , ξn) that converges in probability to

2Φ−1(α)ϕ′′(1)
√

VarP0 (l(x
∗,ξ))

EP0 [min{l(x∗,ξ(1)),l(x∗,ξ(2))}] ,

for any α ∈ (0, 1), and that for all n ≥ 1, ω ∈ Ω, we have r(ξ1(ω), . . . , ξn(ω)) > 0. Then, for

δ(ξ1, . . . , ξn) =
√
r(ξ1, . . . , ξn)/n, we have that the following coverage guarantee:

lim
n→∞

P0

Å
min
x∈X

ρϕ
δ(ξ1,...,ξn),P̂n

(l(x, ξ))−min
x∈X

EP0 [l(x, ξ)] ≤ 0

ã
= α.

On the other hand, if
√
r(ξ1, . . . , ξn) converges in probability to

2Φ−1(α)ϕ′′(1)
√

VarP0 (l(x
∗,ξ))

m2,P0 (l(x
∗,ξ)) , then we have

that

lim
n→∞

P0

Å
min
x∈X

Rϕ

δ(ξ1,...,ξn),P̂n
(l(x, ξ))−min

x∈X
EP0

[l(x, ξ)] ≥ 0

ã
= α.

Proof of Theorem 7. We revisit the proof of Theorem 6. Let T (P) ≜ minx∈X EP[l(x, ξ)]. Using

Proposition 1 and the minimax theorem, we have that

= min
x∈X

ρϕ
δ(ξ1,...,ξn),P̂n

(l(x, ξ))−min
x∈X

EP0
[l(x, ξ)]

min
x∈X

max
q∈Mϕ

δ(ξ1,...,ξn)

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

n∑
i=1

qil(x, ξi)−min
x∈X

EP0
[l(x, ξ)]

= max
q∈Mϕ

δ(ξ1,...,ξn)

min
x∈X

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

n∑
i=1

qil(x, ξi)−min
x∈X

EP0
[l(x, ξ)]

= max
Q∈Mϕ

δ(ξ1,...,ξn)
(P̂n)

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

T (Q)− T (P0),

where

Mϕ
δ(ξ1,...,ξn)

(P̂n) =


n∑
i=1

qiιξi

∣∣∣∣∣∣ qi ≥ 0,

n∑
i=1

qi = 1,
∑
j∈J

qj ≤
(−ϕ)∗

Ä
δ(ξ1, . . . , ξn) ·

|J|
n

ä
(−ϕ)∗(δ(ξ1, . . . , ξn))

,∀J ⊂ [n]

 ,

(EC.33)

where ιξi
denotes the Dirac delta measure. Again, we denote the influence function IF (x∗,P0) ≜
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l(x∗, X)− EP0
[l(x∗, X)], and we examine the quantity

sup
Q∈Mϕ

δ(ξ1,...,ξn)
(P̂n)

|κn(Q)| ≜ sup
Q∈Mϕ

δ(ξ1,...,ξn)
(P̂n)

∣∣∣∣ (−ϕ)∗(δ(ξ1, . . . , ξn))δ(ξ1, . . . , ξn)
(T (Q)− T (P0)− EQ[IF (x

∗,P0)])

∣∣∣∣ .

Our first goal is to show that for any ϵ0 > 0, we have

lim sup
n→∞

P∗
0

Ñ
√
n sup

Q∈Mϕ
δ(ξ1,...,ξn)

(P̂n)

|κn(Q)| > ϵ0

é
= 0. (EC.34)

We fix a δ0 > 0, and choose a measurable selection (see Lemma EC.1.6) Qn(ω) ∈ Mϕ
δ(ξ1(ω),...,ξn(ω))

(P̂n)
with Qn(ω) =

∑n
i=1 qi(ω)ιξi(ω)

, such that

|κn(Qn(ω))| ≥ (1− δ0) sup
Q∈Mϕ

δ(ξ1(ω),...,ξn(ω))
(P̂n)

|κn(Q)|.

Therefore, monotonicity of outer measure gives that

lim sup
n→∞

P∗
0

Ñ
√
n sup

Q∈Mϕ
δ(ξ1,...,ξn)

(P̂n)

|κn(Q)| > ϵ0

é
≤ lim sup

n→∞
P∗
0

(√
n|κn(Qn)| > (1− δ0)ϵ0

)
.

As a mapping Qn : Ω → l∞(H), we have that by Lemma EC.1.5, the sequence
√
n(Qn − P0) is asymp-

totically tight. Hence, Prohorov’s theorem (van der Vaart and Wellner 2023) implies that there exists a

subsequence such that the weak convergence
√
n(m)(Qn(m)−P0)⇝ Z holds for a tight limit Z and that

lim sup
n→∞

P∗
0

(√
n|κn(Qn)| > (1− δ0)ϵ0

)
= lim
m→∞

P∗
0

(»
n(m)|κn(m)(Qn(m))| ≥ (1− δ′)ϵ

)
= 0,

where the latter is obtained by applying the functional delta theorem (Theorem 3.10.4, van der Vaart

and Wellner 2023), and that (−ϕ)∗(δ(ξ1,...,ξn))
δ(ξ1,...,ξn)

P→ 1, to conclude that

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

»
n(m)(T (Qn(m))− T (P0)− EQn(m)

[IF (x∗,P0)])
P∗

→ 0.

Hence, this proves (EC.34). Using Theorem 5, we thus have that in a similar argument as in the proof

of Theorem 6, that

√
n

∣∣∣∣∣∣
(

max
Q∈Mϕ

δ(ξ1,...,ξn)
(P̂n)

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

T (Q)− T (P0)

)
+

Å
1− (−ϕ)∗(δ(ξ1, . . . , ξn))

δ(ξ1, . . . , ξn)

ã
T (P0)

−EP̂n
[IF (x∗,P0)] +

δ(ξ1, . . . , ξn)

2ϕ′′(1)
EP̂n

[min{IF (1)(x∗,P0), IF
(2)(x∗,P0)}]

∣∣∣∣ P∗

→ 0.

Therefore, using the Slutsky’s theorem (example 1.4.7 of van der Vaart and Wellner 2023) and the fact

that convergence in outer probability implies weak convergence (Lemma 1.10.2 of van der Vaart and
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Wellner 2023), we have that

√
n max

Q∈Mϕ
δ(ξ1,...,ξn)

(P̂n)

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

T (Q)− T (P0)

⇝ N(0,VarP0
(l(x∗, ξ)))− 1

2ϕ′′(1)

2Φ−1(α)ϕ′′(1)
√
VarP0

(l(x∗, ξ))

EP0
[min{l(x∗, ξ(1)), l(x∗, ξ(2))}]

·
Ä
EP0 [min{IF (1)(x∗,P0), IF

(2)(x∗,P0)}] + T (P0)
ä

= N(0,VarP0
(l(x∗, ξ)))− Φ−1(α)

»
VarP0

(l(x∗, ξ)).

Hence, we have that

lim
n→∞

P0

(
√
n max

Q∈Mϕ
δ(ξ1,...,ξn)

(P̂n)

(−ϕ)∗(δ(ξ1, . . . , ξn))
δ(ξ1, . . . , ξn)

T (Q)− T (P0) ≤ 0

)
= P

(
N(0,VarP0

(l(x∗, ξ)))− Φ−1(α)
»

VarP0
(l(x∗, ξ)) ≤ 0

)
= Φ(Φ−1(α)) = α.

Finally, if instead we have that
√
r(ξ1, . . . , ξn) converges in probability to

2Φ−1(α)ϕ′′(1)
√

VarP0 (l(x
∗,ξ))

m2,P0 (l(x
∗,ξ)) ,

then we have that

√
n

Å
min
x∈X

Rϕ

δ(ξ1,...,ξn),P̂n
(l(x, ξ))−min

x∈X
EP0

[l(x, ξ)]

ã
=

√
n

Å
min
x∈X

δ(ξ1, . . . , ξn)

(−ϕ)∗(δ(ξ1, . . . , ξn))
ρϕ
δ(ξ1,...,ξn),P̂n

(l(x, ξ))−min
x∈X

EP0
[l(x, ξ)]

ã
=

√
n

Å
min
x∈X

ρϕ
δ(ξ1,...,ξn),P̂n

(l(x, ξ))−min
x∈X

EP0 [l(x, ξ)]

ã
+
√
n

ÅÅ
δ(ξ1, . . . , ξn)

(−ϕ)∗(δ(ξ1, . . . , ξn))
− 1

ã
min
x∈X

ρϕ
δ(ξ1,...,ξn),P̂n

(l(x, ξ))

ã
⇝ N(0,VarP0

(l(x∗, ξ))− Φ−1(α)
√
VarP0

(l(x∗, ξ))

m2,P0
(l(x∗, ξ))

EP0
[min{l(x∗, ξ(1)), l(x∗, ξ(2))}]

+
Φ−1(α)

√
VarP0(l(x

∗, ξ))

m2,P0
(l(x∗, ξ))

EP0
[l(x∗, ξ)]

= N(0,VarP0(l(x
∗, ξ)) + Φ−1(α)

»
VarP0(l(x

∗, ξ)).
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