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Abstract

In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for

optimization under parametric uncertainty. The algorithm first generates solutions in an

iterative manner by sampling and optimizing over a relatively small set of scenarios. Then,

using statistical testing, the robustness of the solutions is evaluated, which can be done with a

much larger set of scenarios. ROBIST offers a number of practical advantages over existing

methods as it is: (i) easy to implement, (ii) able to deal with a wide range of problems

and (iii) capable of providing sharp probability guarantees that are easily computable and

independent of the dimensions of the problem. Numerical experiments demonstrate the

effectiveness of ROBIST in comparison to alternative methods.
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1 Introduction

The field of optimization under parametric uncertainty has undergone rapid development over

the past few decades. However, despite this development, we observe that the existing methods

in this field are still underutilized in practice. In this paper, we propose a new method that is

able to circumvent some of the practical limitations of existing methods.

We propose an algorithm for treating uncertain convex programs (UCP), which appear in

a wide variety of real-world problems such as supply chain planning, portfolio optimization,

inventory control, engineering design, and so on. Such problems can be formulated as follows:

max
x∈X

g(x)

s.t. f(x, z) ≤ 0,
(UCP)

∗Corresponding author: j.s.starreveld@uva.nl

1



where x ∈ Rdx is a decision vector, restricted to a closed convex feasible set X , z ∈ Rdz is an

uncertain parameter vector, g(x) is a concave function and f(x, z) is a scalar-valued function

that is convex in x (for any z). Without loss of generality, we can assume here that there is

no uncertainty in the objective function g(x), as one can always move the uncertainty to the

constraints by using an epigraph formulation. Furthermore, note that multiple constraints can

be incorporated into a single constraint by defining f(x, z) := max
j=1,...,m

{fj(x, z)} ≤ 0, for m

individual constraints f1(x, z) ≤ 0, . . . , fm(x, z) ≤ 0.

The problem (UCP) as formulated above is not well-defined as it does not specify how the

uncertain constraint f(x, z) ≤ 0 should be treated. In the context of this paper, we assume that

one is interested in obtaining a “robust” solution to (UCP), i.e., a solution x that is “likely” to

be feasible despite the uncertainty in regard to the parameter z. One way to define this more

precisely in mathematical terms, is to formulate (UCP) as a chance-constrained program (CCP):

max
x∈X

g(x)

s.t. P(f(x, z̃) ≤ 0) ≥ 1− ϵ, (1)

where the uncertain parameter z is modeled as a random variable z̃ with a probability distri-

bution P and ϵ represents some acceptable probability of constraint violation. First proposed

by Charnes and Cooper (1959), such formulations have been widely studied within the field

of stochastic programming (see e.g., Shapiro et al., 2009; Birge and Louveaux, 2011) and ap-

plied to a variety of problems (Birge, 1997; Wallace and Ziemba, 2005). However, the “true”

probability distribution P is often unknown in practice. Moreover, even if P is known, exact

tractable reformulations of (1) are only known for a limited number of situations (Shapiro and

Nemirovski, 2005). As such, various data-driven techniques have been proposed to deal with the

ambiguous nature of P and alternative problem formulations have been proposed to circumvent

probabilistic constraints such as (1).

1.1 Existing Approaches and Their Practical Limitations

In the following paragraphs we review four well-known approaches for dealing with uncertain

constraints and highlight limitations to their application in practice. Though each approach

formulates the problem differently, they share a common goal: to obtain a solution that satisfies

Constraint (1) with a sufficient degree of confidence.

1.1.1 Sample Average Approximation.. The sample average approximation (SAA) ap-

proach replaces the unknown probability in (1) with an empirical distribution, constructed from

a data set {z1, . . . , zN}. That is, Constraint (1) is replaced by:

1

N

N∑
i=1

1{f(x,zi)≤0} ≥ 1− ϵ, (2)

where 1{f(x,zi)≤0} indicates whether the constraint is satisfied for the realization zi. Theoret-

ical results from Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009) show that if the
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sample size N is sufficiently large, SAA offers a good approximation of (1), both in terms of

optimal objective value and feasible region. However, the theoretically required sample size

can be prohibitively large in practice. Moreover, Constraint (2) is typically non-convex. Such

problems are commonly solved by reformulating the problem as a mixed-integer optimization

problem (Luedtke et al., 2010; Luedtke, 2014), or by resorting to convex inner approximations,

such as the CVaR method by Nemirovski and Shapiro (2007), or the ALSO-X and ALSO-X+

methods by Ahmed et al. (2017) and Jiang and Xie (2022).

1.1.2 Robust Optimization.. Robust optimization (RO) operates in a fully deterministic

paradigm. In RO, one constructs an “uncertainty set” U and enforces the constraint to hold for

all realizations z within the set U . The uncertain constraint f(x, z) ≤ 0 is thus formalized as:

f(x, z) ≤ 0, ∀z ∈ U . (3)

This approach has emerged as a tractable alternative to stochastic programming for high-

dimensional problems, see, for example, Bandi and Bertsimas (2012).

Depending on the distributional assumptions made regarding z, Constraint (3) with a prop-

erly chosen uncertainty set U can be used as a tractable reformulation of (1), or at least a safe

approximation of it (see e.g., Bertsimas et al., 2018; Hong et al., 2021).

For an extended overview of RO and its applications, we refer to Ben-Tal et al. (2009) and

Bertsimas and den Hertog (2022).

While RO has proven to be an effective approach in various applications, its effectiveness

is highly dependent on the choice of the uncertainty set U . As we demonstrate via numerical

experiments in this paper, some of the aforementioned RO methods may scale poorly in the

dimension of the uncertain parameter dz, or result in overly conservative solutions. The conser-

vativeness of RO methods is a well known limitation of the “hard” robust constraint approach.

However, we note that many alternative approaches have been proposed to alleviate this issue,

see e.g., Fischetti and Monaci (2009), Ben-Tal et al. (2010,0) and Roos and den Hertog (2020).

In many cases, RO relies on the ability to reformulate (3) to a tractable robust counterpart,

which is not always possible in practice. Moreover, certain reformulated robust counterpart

may involve complex nonlinear constraints and/or an unacceptably large number of additional

variables and constraints (Bertsimas et al., 2011). Furthermore, if the function f is non-concave

in z, exact reformulations of (3) are known only for specific combinations of the function f and

uncertainty set U (Bertsimas and den Hertog, 2022, Chapter 16). For the general case, safe

approximations can be derived (Bertsimas et al., 2023). However, this requires many additional

variables, which, along with the complexity of the methodology, may pose significant hindrances

to its application in practice.

1.1.3 Distributionally Robust Optimization.. In distributionally robust optimization (DRO),

the distribution P is regarded as uncertain, yet restricted to an “ambiguity set” P of possible

distributions. The uncertain constraint can then be formulated as:

P(f(x, z̃) ≤ 0) ≥ 1− ϵ, ∀P ∈ P. (4)
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If P contains the true probability distribution, then a solution that satisfies (4) also satisfies

(1). For an overview of DRO we refer to Rahimian and Mehrotra (2019). For a survey on

methods for dealing with ambiguous stochastic constraints such as (4) we refer to Postek et al.

(2018).

Similarly to RO, the key challenge in DRO lies in the choice of the ambiguity set P. Data-

driven DRO has emerged as a popular approach, where one uses data to determine the ambiguity

set P. This can be done by estimation of the statistical moments of the distribution, see e.g.,

the method proposed by Delage and Ye (2010), or by using distance measures, see e.g., Mo-

hajerin Esfahani and Kuhn (2018). Data-driven DRO offers advantages over RO in terms of

conservativeness, however this may come at the cost of increased computational effort (Wang

et al., 2022).

The ability to reformulate (4) to a tractable robust counterpart is, as with RO, dependent on

the situation and not always possible in practice. There exist settings in which exact reformu-

lations of (4) are possible, see, for example, Calafiore and Ghaoui (2006) and Jiang and Guan

(2016). Various types of ambiguity sets with tractable counterparts are presented in Hanasu-

santo et al. (2015) and Postek et al. (2016). Nevertheless, DRO suffers from the same practical

limitations as RO in terms of its general applicability and ease of implementation.

1.1.4 Scenario Optimization.. Scenario optimization (SO) is a data-driven technique that

enforces the uncertain constraint to be satisfied for all elements in a set of scenario’s (see Calafiore

and Campi, 2005; Nemirovski and Shapiro, 2006). More precisely, given a set of i.i.d. data

{z1, . . . , zN}, the scenario optimization approach aims to solve the following scenario convex

program (SCP):

max
x∈X

g(x)

s.t. f(x, zi) ≤ 0, ∀zi ∈ S.
(SCP)

The SO approach is straightforward to implement and can be applied to a wide variety of

problems (e.g., it does not require concavity of f in z). Furthermore, an elegant, theoretical

result established by Calafiore and Campi (2005) and later tightened by Campi and Garatti

(2008) connects the number of randomly sampled scenarios included in S with the robustness

of solutions obtained by solving (SCP). This result allows one to assert, with a certain level of

confidence, that any solution to (SCP), where the scenarios in S are randomly sampled from P,
satisfies probability guarantee (1). We refer to Theorem 1 in Campi and Garatti (2008) for the

details.

The practical limitations of this approach are the following. First, while the result from Campi

and Garatti (2008) was proven tight for the special class of “fully-supported” (UCP), this method

can be overly conservative for various problems encountered in practice, as we demonstrate via

numerical experiments in this paper. Second, the required number of randomly sampled scenar-

ios grows linearly with the number of decision variables (Oishi, 2007). For large-scale problems,

a large number of sampled scenarios implies a large number of dense constraints in (SCP), which

can make solving the problem numerically challenging (Bertsimas et al., 2018). As such, the
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classic approach proposed by Calafiore and Campi (2005) is considered generally impractical for

medium- and large-scale optimization problems.

A variety of methods have been proposed to remedy these limitations. For an overview

on such methods, we refer to Alamo et al. (2015). In the numerical experiments presented in

Section 4.3 of this paper, we apply the methods proposed by Carè et al. (2014); Calafiore (2017);

Garatti et al. (2022) and demonstrate that these methods remain limited in their ability to deal

with large-scale problems.

1.2 Our Method and its Advantages

Our method utilizes scenario optimization to generate solutions. However, instead of utilizing

an a priori probabilistic guarantee, as in the classic approach of Calafiore and Campi (2005),

we employ a posteriori probabilistic guarantees, which are derived via statistical testing. We

do this because a posteriori guarantees, which are computed after the solution x is known, are

often significantly tighter than a priori guarantees, which are derived before x is known (Guzman

et al., 2016; Shang and You, 2020; Bertsimas et al., 2021). This key difference allows our method

to utilize a smaller set of scenarios when solving (SCP), which is computationally advantageous.

The use of a posteriori evaluations is not unique to our method. For example, this is also

used in the works by Chamanbaz et al. (2015) and Calafiore (2017). However, our evaluation

procedure for assessing the “robustness” of solutions differs from theirs in significant ways.

First, our a posteriori testing procedure is based on a ϕ-divergence test statistic. It provides an

asymptotic confidence lower bound on the true probability of feasibility of a solution according

to the central limit theorem, requiring only an independence assumption. The tightness of

the guarantee depends only on the size of the test. By contrast, the probabilistic guarantee

provided by the bounds in Chamanbaz et al. (2015) and Calafiore (2017) requires, in addition to

the independence assumption, that the optimization problems have unique optimal solutions or

that a suitable tie-break rule is applied. Furthermore, the tightness of their guarantee depends on

whether the optimization problem is “fully supported”. Second and importantly, the algorithm

proposed in Chamanbaz et al. (2015) requires a new set of validation samples with increasing

sample size at each iteration. Our a posteriori evaluation procedure does not require this, being

unaffected by the number of iterations performed. Third, the application of our confidence bound

is not only limited to chance-constrained problems, but can also be extended to optimization

problems involving expectation-based risk measures.

Besides the aforementioned works, a “wait-and-judge” approach is also proposed in Campi

and Garatti (2018) and applied in the method of Garatti et al. (2022). However, this eval-

uation procedure assesses the “robustness” of a solution by counting the number of “support

constraints”, which also differs significantly from our statistical testing approach.

An important aspect of our approach is that the statistical tests are carried out on the

univariate Bernoulli random variable 1[f(x,z̃)≤0], where x is fixed. Since we are only concerned

with the feasibility of x, there are only two “classes” (i.e., f(x, z̃) ≤ 0 and f(x, z̃) > 0). This

provides probability guarantees that are independent of the dimension of the decision variables

as well as the dimension of the uncertain parameters. This allows our evaluation procedure
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to scale better, as the problem size and/or the amount of data increases, than the evaluation

procedures proposed by Yanıkoğlu and den Hertog (2013) and Campi and Garatti (2018), which

is demonstrated in Sections 4.1.1 and 4.3.1.

Our main contribution is to propose a method that offers practical advantages over existing

methods in the literature. The advantages of ROBIST are the following.

First, our method is computationally more efficient than many existing methods. By itera-

tively selecting which scenario(s) to sample and optimize for, we can reduce the total number

of scenarios with which (SCP) is solved. Our evaluation procedure is independent of dx and dz

and scales well with the amount of data available, which allows the algorithm to efficiently deal

with large-scale optimization problems.

Second, our method is more versatile than many existing methods, as it is able to deal

with a wide variety of problem types. These include optimization problems with: joint chance-

constraints, constraints with non-concave uncertainty, expectation-based risk measures, regret-

based risk measures and adaptive decision variables with non-fixed recourse.

In an effort to lower the hurdle for practical usage, we have implemented ROBIST in Python,

which is a popular programming language amongst practitioners. The code is publicly available

at: https://github.com/JustinStarreveld/ROBIST.

1.3 Structure

The remainder of the paper is organized as follows. In Section 2, we describe the ROBIST algo-

rithm with the help of an illustrative example and provide theoretical analysis of its convergence.

In Section 3, we discuss various possible generalizations and extensions. Then, in Section 4, we

compare ROBIST to existing methods and demonstrate the efficiency and versatility of our pro-

posed method via a variety of numerical experiments. Finally, we provide concluding remarks

in Section 5. Additional technical details, proofs and extra numerical results are relegated to

the Appendices.

1.3.1 Notation.. We denote a random variable by the tilde sign, i.e., x̃. Lowercase bold letters

such as x denote vectors, where e denotes a vector of all ones. Calligraphic uppercase characters

such as X denote sets.

2 Methodology

As discussed in Section 1, explicitly modeling and optimizing over a constraint such as (1) is

difficult. Moreover, the underlying probability distribution P of z̃ is rarely known in practice.

However, given a data set DN = {z1, . . . , zN} ofN independent realizations of z̃ and a solution x,

it is possible to use statistical testing to assert, with confidence greater than or equal to 1− α,

that x satisfies the following probabilistic guarantee:

P(f(x, z̃) ≤ 0) ≥ γ. (5)
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Henceforth, we will refer to γ as a feasibility certificate. Note that if a solution x satisfies (5)

with γ ≥ 1− ϵ, one can state, with a certain level of confidence, that x satisfies (1). This insight

serves as the foundation to our proposed algorithm.

2.1 Algorithm

Our algorithm, ROBIST, consists of two main procedures: (i) a generation procedure in which

we use a training data set Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
to generate solutions, and (ii) a two-step

evaluation procedure in which we use a validation data set Dvalid
N2

=
{
ž1, . . . , žN2

}
to evaluate all

the candidate solutions generated by ROBIST, and a third test set Dtest
N3

=
{
z̈1, . . . , z̈N3

}
that

evaluates the robustness of the final solution selected from the candidates. By embedding these

two procedures in an iterative algorithm, we look to obtain solutions x that satisfy (5) with

γ ≥ 1− ϵ, while minimizing the objective function g(x). A complete description of ROBIST is

provided using pseudo-code in Algorithm 1.

2.1.1 Generation procedure.. In each iteration i of the algorithm, we solve the following

variant of (SCP) to generate solution xi:

max
x∈X

g(x)

s.t. f(x, ẑj) ≤ 0, ∀ẑj ∈ Si,
(SCPi)

where Si ⊆ Dtrain
N1

is a finite set of scenarios. The generated solution xi is required to be feasible

for all scenarios ẑj in Si. Optimizing over a larger set Si is therefore likely to result in a more

robust solution xi. However, to avoid overly conservative solutions and reduce the computational

cost of solving (SCPi), our algorithm is designed to keep the size of Si to a minimum.

2.1.2 Evaluation procedure.. Given a data set DN = {z1, . . . , zN} and a solution xi, one

can evaluate the robustness of xi using DN and derive a feasibility certificate γi via statistical

testing. Our procedure is as follows.

First, for each scenario zj ∈ DN , we compute f(xi, z
j) and check whether f(xi, z

j) ≤ 0 is

satisfied. This provides an empirical estimate p of the probability that xi is feasible:

p :=
1

N

N∑
j=1

1[f(xi,zj)≤0]. (6)

Second, we construct a statistical confidence interval around (6) using the modified χ2-

distance, which is a member of the family of ϕ-divergences (see A for further details). This

results in the following 1− α confidence region:

Qϕ(p,N, α) :=

{
q ∈ R : q ≥ 0,

(q − p)2

p
+

(q − p)2

1− p
≤

χ2
1,1−α

N

}
, (7)

where α is determined by the user and χ2
1,1−α is the 1−α quantile of the chi-squared distribution

with 1 degree of freedom. As shown by Pardo (2006), as N →∞, Qϕ(p,N, α) contains the true

probability that xi is feasible with confidence of at least 1 − α. We note that this confidence
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region (7) is one-dimensional, which allows us to bypass the curse of dimensionality stemming

from the number of the uncertain parameters dz (in contrast to the ϕ-divergence-based confidence

sets utilized in Yanıkoğlu and den Hertog, 2013; Ben-Tal et al., 2013). Furthermore, we note

that (7) defines a family of possible distributions (i.e., an ambiguity set), which captures a degree

of ambiguity (dependent on α) in the underlying probability distribution of 1[f(xi,zj)≤0].

Third, we determine feasibility certificate γi, which implies a probabilistic guarantee equiv-

alent to (5) for solution xi, by computing:

γi := min
q∈Qϕ(p,N,α)

q. (8)

This can be easily computed, as shown by the following lemma (see B.1 for the proof).

Lemma 1. The problem stated in (8) has the following closed-form solution:

min
q∈Qϕ(p,N,α)

q = max
{
p−

√
p(1− p)r, 0

}
, with r =

χ2
1,1−α

N
. (9)

Furthermore, γi is an increasing function in p.

Note that certificates derived via (8) are only statistically valid if the scenarios zj ∈ DN are

i.i.d. samples.

It is for this reason that ROBIST separates the available data into training, validation and

testing data sets. The purpose of the validation data Dvalid
N2

is to derive a reasonable proxy

certificate γ̌i for each generated solution xi, which we use to select a final solution. Then, to

account for multiple hypothesis testing1 and optimization bias, the test data Dtest
N3

is used to

derive a statistically valid feasibility certificate for the final solution. Note that our probabilistic

guarantee is only asymptotically valid (as N3 →∞).

Remark 1. Alternatively, one can also use the validation set Dvalid
N2

to perform multiple hy-

pothesis testing by constructing feasibility certificates that hold simultaneously for all candidate

solutions. This can be done by enlarging the confidence region (7). However, as we observed in

practice, this approach can be too conservative and may not be as effective as using a third test

sample for the final assessment.

2.1.3 The scenario selection strategy. . The initial set S0 contains only a single scenario.

If available, we utilize the nominal scenario, otherwise we pick a random scenario from Dtrain
N1

.

Then, at each iteration i, the set Si+1 is constructed by either adding a scenario to Si, or

removing a scenario from Si.
We inform this decision by constructing a proxy certificate γ̂i, derived using Dtrain

N1
instead of

Dvalid
N2

. The idea is that γ̂i, while statistically invalid, can act as an estimate of γ̈i and steer the

algorithm’s generation procedure. If γ̂i < 1− ϵ, one suspects that the solution xi is insufficiently

robust, implying that we should add a scenario to Si. If γ̂i ≥ 1 − ϵ, the solution xi might

1Though each feasibility certificate is valid for each solution, it does not hold simultaneously for all solutions.

Hence, adjustment for multiple hypothesis testing is needed.
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Algorithm 1 ROBIST

Input: Sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
, Dvalid

N2
=

{
ž1, . . . , žN2

}
and Dtest

N3
=

{
z̈1, . . . , z̈N3

}
. Ac-

ceptable probability of constraint violation ϵ, statistical confidence level α, time limit Tmax,

iteration limit imax and probability of taking opposite action υ.

Output: Best found solution xi∗ .

1: Let T represent the current running time of the algorithm

2: Initialize set S0 with nominal or random scenario from Dtrain
N1

3: Set iteration counter i← 0

4: while T < Tmax and i < imax do

5: Solve (SCPi) to obtain xi

6: Derive proxy certificate γ̂i via (9) using the scenarios in Dtrain
N1

7: Draw random variable ι ∼ U(0, 1)

8: if (γ̂i ≤ 1− ϵ and ι > υ) or (γ̂i > 1− ϵ and ι < υ) then

9: Randomly add a scenario from {ẑj ∈ Dtrain
N1

: f(xi, ẑ
j) > 0} to Si+1

10: else

11: Randomly remove a scenario from Si to create Si+1

12: end if

13: i← i+ 1

14: end while

15: Derive proxy certificates γ̌j , j = 0, . . . , i− 1 via (9) using the scenarios in Dvalid
N2

16: if ∃γ̌j : γ̌j ≥ 1− ϵ then

17: i∗ := argmaxj{g(xj) : γ̌j ≥ 1− ϵ}
18: else

19: i∗ := argmaxj{γ̌j}
20: end if

21: Derive valid feasibility certificate γ̈i∗ via (9) using the scenarios in Dtest
N3

22: Return xi∗ with certificate γ̈i∗
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be overly conservative, implying that we should remove a scenario from Si. The decision of

whether to add or remove a scenario, is mainly driven by this proxy certificate γ̂i. However,

with user-defined probability υ, the opposite action is taken. This random component is added

to ensure theoretical convergence of our algorithm, which we discuss in Section 2.3. We analyze

the effect of υ using numerical experiments in C.1.1.

In an effort to keep the algorithm as simple as possible, when adding a scenario, we randomly

pick a scenario from the set of currently violated scenarios {ẑj ∈ Dtrain
N1

: f(xi, ẑ
j) > 0}. We

numerically compare this strategy with alternative selection strategies in C.1.2. When removing

a scenario, we randomly pick a scenario from Si.
We note that the efficiency of Algorithm 1 can, in certain cases, be improved. Whenever a

scenario ẑj is removed from Si and the dual variable corresponding to the constraint f(xi, ẑ
j) ≤ 0

is zero, one can skip Step 5 as xi+1 = xi. Furthermore, the evaluation of xi+1 can be skipped

in Steps 6 and 15, as γ̂i+1 = γ̂i and γ̌i+1 = γ̌i.

Finally, we note that the proposed algorithm is highly parallelizable. First, the evaluations

performed in Steps 6, 15 and 21 can be done independently per scenario. Second, one could

conduct multiple while loops (lines 4-14 of Algorithm 1) in parallel. Doing so would result in

less correlated sets Si and is likely to generate a more diverse set of solutions.

2.1.4 Stopping criteria and final solution.. The algorithm terminates when a prescribed

time limit or a maximum number of iterations is reached. If the algorithm is not able to

find a solution with feasibility certificate γi ≥ 1 − ϵ, it returns the solution with the highest

certificate. Otherwise, it returns the solution xi with maximal objective value g(xi), while

requiring that γi ≥ 1− ϵ.

2.2 Illustrative Example

Consider the following toy problem:

max
x1,x2≤1

x1 + x2 (10)

s.t. z1x1 + z2x2 ≤ 1, (11)

where z1 and z2 are uncertain parameters, both uniformly distributed with support [−1, 1]. Note
that Problem (10)-(11) is an example of (UCP), where X = {x : x1 ≤ 1, x2 ≤ 1}, g(x) = x1+x2

and f(x, z) = z1x1 + z2x2 − 1.

Imagine we have access to a data set of N = 300 realizations of (z̃1, z̃2) and would like a

solution to satisfy Constraint (11) with probability greater than or equal to 90% (i.e., ϵ = 0.1).

In the following paragraphs we illustrate the application of Algorithm 1 to this problem.

First, we randomly split the data set into three equal-sized sets Dtrain
N1

=
{
ẑ1, . . . , ẑN1

}
,

Dvalid
N2

=
{
ž1, . . . , žN2

}
and Dtest

N3
=

{
z̈1, . . . , z̈N3

}
, each containing N1 = N2 = N3 = 100

scenarios. We use Dtrain
N1

to generate and (informally) evaluate the robustness of solutions during

the iterative phase of the algorithm. Then, in the evaluation phase of the algorithm, we utilize

Dvalid
N2

to evaluate the generated solutions and select the most promising solution. Finally, we

utilize Dtest
N3

to derive a statistically valid probability guarantee for the selected solution.
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Suppose we initialize S0 = {z̄} with the expected/nominal case z̄ = (z1, z2) = (0, 0). Then,

solving (SCPi) with S0 provides an initial solution: x0 = (x1, x2) = (1, 1) with objective

value g(x0) = 2. The next step is to use our evaluation procedure to assess the robustness

of x0. First we compute an empirical estimate of the probability of violating Constraint (11) by

determining whether f(ẑj ,x0) ≤ 0, ∀ẑj ∈ Dtrain
N1

. See Figure 1 for a visual aid.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

feasible scenarios
violated scenarios
nominal scenario
1.0z1 + 1.0z2 1

Figure 1: Visualization of S0 and the evaluation of the constraint f(x0, ẑ
j) ≤ 0 of the solution

x0 = (1, 1) on the training data Dtrain
N1

. The data points for which the constraint is feasi-

ble/infeasible are indicated in blue/red.

We find that solution x0 is feasible for 87
100 of the scenarios in the training data Dtrain

N1
.

Setting the probability of making a type I error less than or equal to 1% (i.e., α = 0.01), we use

Equation (9), with p = 0.87, N = 100 and α = 0.01, to derive a proxy certificate of γ̂0 = 0.78.

Assume that we have set the probability of taking the opposite action υ = 0. Then, as our

proxy certificate γ̂0 does not yet meet the desired level of robustness (γ̂0 = 0.78 < 1− ϵ = 0.90)

the algorithm will randomly pick one of the 13 currently violated scenarios (indicated by red

stars in Figure 1) and add this scenario to our set. Suppose scenario ẑ11 = (0.96, 0.60) is chosen,

then S1 = {z̄, ẑ11} and we proceed to the next iteration.

Using an enlarged set of scenarios S1, we solve (SCPi) and retrieve solution: x1 = (0.4, 1) with

objective value g(x1) = 1.4. While adding a scenario/constraint to our optimization problem

has lowered the objective value, it is likely to ensure that the resulting solution is more robust.

Again, we evaluate the robustness of our newly generated solution x1 using the scenarios in

Dtrain
N1

(see Figure 2). We find that our new solution x1 is feasible for 97
100 of the scenarios, from

which we derive a proxy certificate γ̂1 = 0.93.

As this exceeds our desired level of feasibility (γ̂1 ≥ 1− ϵ = 0.90), the algorithm will remove

a scenario from S1 in the following iteration. The algorithm continues adding or removing

scenarios and evaluating the resulting solutions on Dtrain
N1

in this manner until either the time

limit or iteration limit is reached.

In this example, we set a limit of 100 iterations and once this stopping criteria is reached, we

use the “out-of-sample” validation data Dvalid
N2

to evaluate each generated solution xi and obtain

proxy feasibility certificates γ̌i. These evaluations can then be used to construct a trade-off
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Figure 2: Visualization of S1 and the evaluation of solution x1 = (0.4, 1) on the training data.

curve and aid in choosing the most promising solution. The orange line in Figure 3 depicts such

a trade-off curve, where each orange square represents a non-dominated solution (with respect

to the validation data).

Recall that we would like our solution to be feasible with probability ≥ 90%, thus we select

the solution with the highest objective value while requiring that the proxy certificate derived

from the validation data is greater than or equal to 0.90. Finally, we utilize Dtest
N3 to provide a

valid feasibility certificate for this solution. In this example, the algorithm returns a solution to

Problem (10)-(11) with objective value 1.37 and feasibility certificate 0.93.
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Feasibility Certificate
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Figure 3: Trade-off curves constructed from a set of solutions generated by ROBIST. The blue

circles depict proxy certificates derived using the training data, the orange squares represent

proxy certificates derived using the validation data and the green hexagon represents the final

feasibility certificate provided by the testing data. The vertical dotted line represents the desired

level of robustness (1− ϵ).
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2.3 Convergence

In this section, we study the optimality of the final solution generated by Algorithm 1, which

we define given a realization of the training and validation data sets (Dtrain
N1

and Dvalid
N2

). Let

S̃1, . . . , S̃2N1 denote all the possible subsets of Dtrain
N1

. Let xi ∈ argmaxx∈X {g(x) | f(x, zj) ≤
0,∀zj ∈ S̃i}. Let γ̌i denote the proxy feasibility certificate of xi, as derived via (8) using Dvalid

N2
.

Then, we have the following definition of optimality.

Definition 1. Given Dtrain
N1

and Dvalid
N2

, an optimal solution x∗ with respect to the data is defined

as an element of the set argmaxi=1,...,2N1{g(xi) | γ̌i ≥ 1− ϵ}.

The following lemma shows that Algorithm 1 yields a solution that is optimal with respect

to the training and validation data, if the modeler sets no limitation on the running time and

the number of iterations of the algorithm (see B.2 for the proof).

Lemma 2. Assume that in Algorithm 1 the modeler has set Tmax = imax = ∞ and υ > 0.

Suppose that for all possible subsets Si ⊆ Dtrain
N1

, the solution to (SCPi) is unique, and that

there exists a (SCPi) such that its solution achieves a proxy certificate γ̌i ≥ 1 − ϵ. Then, the

probability that the solution obtained from Algorithm 1 after finitely many iterations, is optimal

with respect to the data, is 1.

Remark 2. The assumption used in the proof of Lemma 2 on the uniqueness of the solutions of

(SCPi) for all possible subsets Si ⊆ Dtrain
N1

is unnecessary if the solver that is used to solve (SCPi)

does not output different solutions when a redundant constraint is removed or added. Here, we

consider a constraint “redundant” if its addition or removal does not change the optimal objective

value of the optimization problem.

3 Generalizations and Extensions

In this section we describe how ROBIST can be applied to a variety of problem types. Depending

on the type of problem, certain modifications are made to Algorithm 1.

3.1 Uncertainty in the Objective Function

Although Algorithm 1 as described in Section 2 is already able to deal with parametric uncer-

tainty in the objective function, minor modifications can be made to improve its performance.

Consider an uncertain convex problem of the form:

max
x∈X

f(x, z). (12)

Problem (12) can be reformulated such that the uncertain parameters only appear in the con-

straints of the problem, by introducing an epigraph variable θ:

max
x,θ

θ (13)

s.t. θ − f(x, z) ≤ 0, (14)

x ∈ X . (15)
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Note that the epigraph variable θ ∈ R can always be adjusted such that (14) is satisfied. As

such, Constraint (14) should be treated differently.

We slightly alter Steps 15 and 21 in Algorithm 1 in the following manner. For a given

solution (xi, θi), instead of computing the value of γi for which we can claim with confidence of

at least 1− α that:

P(f(xi, z̃) ≥ θi) ≥ γi, (16)

we are now interested in determining the maximum value of θi, let this be denoted by θ∗i , for

which we can claim, with confidence of at least 1− α, that:

P(f(xi, z̃) ≥ θ∗i ) ≥ 1− ϵ. (17)

We determine θ∗i in the following manner. First, we determine (via golden-section search)

the thresholds for the number of scenarios in Dvalid
N2

and Dtest
N3

for which (14) would have to be

satisfied in order to claim (17). Denote these thresholds by Nmin
2 and Nmin

3 . Then, depending on

whether we are in Step 15 or Step 21, we sort the function evaluations f(xi, z
j) for all scenarios

zj ∈ Dvalid
N2

(or Dtest
N3

) and set θ∗i equal to the Nmin
2 -th (or the Nmin

3 -th) largest evaluation.

Finally, since there are no uncertain constraints in Problem (12), there is no trade-off between

feasibility and optimality. In such situations, the problem becomes a one-dimensional search for

the maximal θ∗i for which we can claim (17). As such, Steps 16-20 in Algorithm 1 are also

adjusted, where we now define i∗ := argmaxj{θ∗j}.

3.2 Adaptive Optimization Problems

In this subsection, we show how ROBIST can be extended to deal with two-stage adaptive

optimization problems. We note that the approach can also be applied to multi-stage problems

(with minor modifications). However, for ease of exposition, in this paper we focus on a two-stage

setting. Consider the following problem:

max
x∈X

g(x) (18)

s.t. V (x, z) ≤ 0, (19)

where

V (x, z) := max
y∈Y(x)

f(x, z,y). (20)

Here the decision vector x represents first-stage “here-and-now” decisions and the decision vec-

tor y consists of second-stage “wait-and-see” decisions. The y variables are adaptive, i.e., they

are able to adapt to the realization of z̃. Moreover, the second-stage decisions y are restricted

to some closed convex feasible set Y(x), which may depend on the first-stage decisions x.

We are still able to generate solutions to Problem (18)-(20) by solving, at each iteration i,

a scenario convex program with respect to some set of scenarios Si. However, this now involves

14



the inclusion of recourse decision vectors yj for each scenario ẑj ∈ Si. This amounts to solving

the following optimization problem:

max
x,y

g(x) (21)

s.t. f(x, ẑj ,yj) ≤ 0, ∀ ẑj ∈ Si, (22)

yj ∈ Y(x), ∀ ẑj ∈ Si, (23)

x ∈ X . (24)

By solving (21)-(24) we are able to generate a here-and-now solution xi at each iteration i.

The evaluation of the solution requires more computation than in the static setting. Given a data

set of N independent scenarios {z1, . . . , zN}, instead of performing simple function evaluations

(e.g., evaluating f(xi, z
j) for j = 1, . . . , N), one now evaluates V (xi, z

j) for j = 1, . . . , N by

solving N instances of Problem (20). This allows one to determine whether there exists a

recourse decision y such that uncertain constraint (19) could be satisfied. With this information

one can compute empirical estimate p, where:

p :=
1

N

N∑
j=1

1[V (xi,zj)≤0].

This estimate p can then be used to derive feasibility certificate γi by computing (8).

3.3 Statistical Confidence Bounds on Expectation

Throughout this paper we primarily focus on obtaining a solution that is robust in the sense

of a probability guarantee such as (5). However, our method can be extended to incorporate

expectation-based risk measures. In this subsection, we discuss how one can use a posteriori

statistical testing to derive (asymptotic) upper and lower confidence bounds on:

EP[f(x, z̃)], (25)

where EP denotes the expectation with respect to P, the distribution of z̃.

Given a solution xi, assume that we have bounded support [lxi , uxi ] for f(xi, z̃), and construct

a partition {[ek, ek+1]}Kk=1, where lxi = e1 ≤ e2 ≤ · · · ≤ eK+1 = uxi . Then, the following

inequality must hold:

EP[f(xi, z̃)] =

K∑
k=1

∫
Ω
f(xi, z̃)1{f(xi,z̃)∈[ek,ek+1]}dP ≤

K∑
k=1

ek+1P (f(xi, z̃) ∈ [ek, ek+1]) .

Let vector p ∈ RK be an empirical estimate of the probability (under P) that f(xi, z̃) resides

in each of the K intervals. One can compute this estimate using N independent scenarios zj ,

where the k-th element of p, pk, is computed as follows:

pk :=
1

N

N∑
j=1

1[f(xi,zj)∈[ek,ek+1]].
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Then, one can construct the following ϕ-divergence based (1 − α)-confidence region around p

(see A for further details):

Qϕ(p, N, α) =

{
q ∈ RK : q ≥ 0, e⊺q = 1, Iϕ(q,p) ≤

ϕ′′(1)

2N
χ2
K−1,1−α

}
. (26)

As N → ∞, the set (26) contains the true probability that f(xi, z̃) resides in each of the K

intervals. As such, one can get an asymptotic upper confidence bound ui on EP[f(xi, z̃)], by

computing:

ui := max
q∈Qϕ(p,N,α)

K∑
k=1

ek+1qk. (27)

Similarly, one can also construct a lower confidence bound li on EP[f(xi, z̃)] by computing:

li := min
q∈Qϕ(p,N,α)

K∑
k=1

ekqk. (28)

The optimization problems stated in (27) and (28) are both convex and easy to solve.

3.4 Regret-Based Guarantees

Within optimization under uncertainty it is also common to consider regret minimization. In

this subsection, we show how our methodology can be extended to provide statistical guarantees

in regard to the regret associated with any given solution xi.

Given a solution xi, we define the regret R(xi, z
j) with respect to a realized scenario zj , as:

R(xi, z
j) :=

g∗(zj)− g(xi), if f(xi, z
j) ≤ 0,

+∞, otherwise,
(29)

where:

g∗(zj) := max
x∈X
{g(x) : f(x, zj) ≤ 0}. (30)

The regret measures the ex-post difference between the achieved objective value and the

best objective value that could have been obtained if the realization of z̃ had been known before

making the decision.

Incorporating regret into our approach requires only a minor adjustment to the evaluation

procedure. For each scenario zj ∈ DN , instead of evaluating f(xi, z
j), we evaluate R(xi, z

j), as

defined in (29). These evaluations can then be used to claim, with confidence of at least 1− α,

that:

P(R(xi, z̃) ≤ τ) ≥ βi, (31)

where τ represents some threshold value and βi is an asymptotic lower bound on the probability

that the regret of solution xi is less than τ . Additionally, using the approach described in

Section 3.3, it is also possible to derive a (1 − α)-statistical confidence interval [li, ui] for the

expected regret EP[R(xi, z̃)] for any given solution xi.
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4 Numerical Experiments

In this section, we present numerical experiments to test the performance of ROBIST on five

different applications:

1. Toy problem: comparison with Yanıkoğlu and den Hertog (2013), with additional analysis

of ROBIST (see Section 4.1 and C.1).

2. Linear CCP: comparison with SAA-based methods of Ahmed et al. (2017) and Jiang and

Xie (2022) (see Section 4.2).

3. Weighted distribution problem: comparison with the scenario optimization methods of

Calafiore and Campi (2005); Carè et al. (2014); Calafiore (2017) and Garatti et al. (2022)

(see Section 4.3).

4. Portfolio management problem: comparison with the classical robust optimization ap-

proach of Bertsimas et al. (2018) (see C.2).

5. Two-stage adaptive lot-sizing problem: comparison with sampling approach of Vayanos

et al. (2012) (see C.3).

For all experiments we utilize synthetic randomly generated data and split the data equally

and randomly into the training, validation and testing data sets. Furthermore, in Step 2 of

Algorithm 1 we initialize S0 with a random scenario from Dtrain
N1

and set υ = 0.01 (see C.1.1 for

numerical experiments that analyze the effect of this parameter).

All computations are conducted on a 64-bit Windows machine equipped with a 2.80 GHz

Intel Core i7 processor with 32 GB of RAM. All mathematical programs are coded in Python

3.10 using CVXPY 1.3 and solved with Gurobi 10.0.0. The code is publicly available at https://

github.com/JustinStarreveld/ROBIST.

4.1 Toy Problem

In this subsection, we consider the toy problem from Yanıkoğlu and den Hertog (2013), which

is similar to the illustrative example presented in Section 2.2, but now in k dimensions. The

problem is formulated as follows:

max
x

e⊺x (32)

s.t. P (z̃⊺x ≤ 1) ≥ 1− ϵ, (33)

x ≤ 1, (34)

where x, z ∈ Rk, and e⊺ = (1, 1, . . . , 1) ∈ Rk. The random variables z̃1, . . . , z̃k are assumed to

be independently and uniformly distributed in [−1, 1].
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4.1.1 Comparison with Yanıkoğlu and den Hertog (2013).. In the following experi-

ments, we compare ROBIST with the method proposed by Yanıkoğlu and den Hertog (2013),

which is abbreviated as Y&dH. For the numerical experiments presented in this subsection, we

set ϵ = 0.05, α = 0.01 and imax = 200.

For the details in regards to Y&dH, we refer to Section 3.2 of their paper. In these experi-

ments we copy their settings, using the modified χ2-distance as the ϕ-divergence function, along

with an ellipsoidal uncertainty set with an initial radius of 0.1 and a step size of 0.01. Further-

more, we follow the implementation of Y&dH and construct the cells such that the support of

z̃ is divided into 10k cells of equal geometry.

Two limitations mentioned in Yanıkoğlu and den Hertog (2013) are that, as the number of

uncertain parameters increases, (i) the required number of data points increases and (ii) the

computational performance deteriorates. This is due to the evaluation procedure with which

their probability guarantees are derived, which is dependent on the dimension of z̃. By contrast,

the probability guarantees utilized in ROBIST are independent of the dimension of z̃. We

illustrate this difference in the following numerical experiments.

For Y&dH, the dimension of z̃ influences the number of “cells” and thus the amount of data

required.2 For ROBIST there is no strict minimum or maximum regarding the amount of data

and the algorithm is given access to N = 1000 randomly generated realizations of z̃.

In Table 1 we report the total computation time for both methods, as well as the best

objective value (belonging to a solution for which the associated feasibility certificate is greater

than or equal to 1−ϵ = 0.95). To control for the effect of randomness, the experiment is repeated

100 times and we report the average.

Table 1: Results from applying Yanıkoğlu and den Hertog (2013) and ROBIST to Problem (32)-

(34) as the dimension of the problem (represented by k) increases. Here, N indicates the total

amount of data utilized by the respective methods.

N Time (s) Objective value Feasibility certificate

k Y&dH ROBIST Y&dH ROBIST Y&dH ROBIST Y&dH ROBIST

2 1000 1000 4.3 1.4 1.19 1.28 0.972 0.956

3 10000 1000 7.4 2.1 1.42 1.54 0.958 0.954

4 100000 1000 27.8 2.5 1.67 1.76 0.952 0.951

5 1000000 1000 200.2 3.1 1.85 1.93 0.951 0.952

Even for the relatively small problem instances considered in Table 1, we find that, as the

problem size k increases, the amount of data required by Y&dH quickly becomes unmanageable

and the computational performance of the method deteriorates. In contrast, for ROBIST we

observe that having access to 1,000 data points is sufficient for these problem instances and that

the increase in time is relatively small.

2We adhere to the rule of thumb stated in Yanıkoğlu and den Hertog (2013) that each cell should contain “at

least five observations”. It follows that, when applying Y&dH to this problem, a minimum of 5× 10k data points

is required. To be on the safe side, Y&dH is provided with twice this minimum amount (i.e., 10k+1 randomly

generated data points).
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We also observe that ROBIST is able to provide solutions with higher objective values than

the solutions generated by Y&dH, while possessing comparable feasibility certificates. Even

though the target probability of constraint satisfaction was set to 0.95, we find, by using addi-

tional out-of-sample testing (with N = 106), that the average empirical probability of constraint

satisfaction for the solutions generated by Y&dH is actually much higher at 0.984. The final

solutions provided by ROBIST are less conservative and closer to the target, with an average

empirical probability of 0.966.

4.1.2 Analysis of ROBIST.. In this subsection, we analyze ROBIST on a slightly altered

version of our toy problem. We add an additional constraint (1 +
∑k−1

j=1 xj ≤ xk) to (32)-(34),

which allows us to analytically derive the true probability that (33) is satisfied:

p∗(x) := P (z̃⊺x ≤ 1) =
1

2
+

1

2xk
. (35)

Furthermore, to expand the feasible region of the problem, we slightly alter Constraint (34),

which becomes x ≤ k. Therefore, given knowledge of the true distribution of z̃, one could solve

the following optimization problem:

θ∗ := max
x

e⊺x :
1

2
+

1

2xk
≥ 1− ϵ, x ≤ k, 1 +

k−1∑
j=1

xj ≤ xk

 , (36)

to obtain an optimal, sufficiently robust, solution. In the following sets of experiments we uti-

lize (35) and (36) to assess the robustness and optimality of solutions obtained via Algorithm 1.

In the first set of experiments, we analyze the impact of the total amount of available data N .

We do this for a problem setting with k = 2 and ϵ = 0.05. Using α = 0.10 and imax = 1,000.

We apply ROBIST to the (altered) toy problem and for each iteration i, we store each obtained

solution xi along with its proxy certificate γ̌i (obtained using the validation data). We repeat

this procedure 100 times and evaluate the following three metrics:

1. optimality gap of the best found “sufficiently robust” solution:

θ∗ −maxi{g(xi) : γ̌i ≥ 1− ϵ, p∗(xi) ≥ 1− ϵ}
θ∗

;

2. mean absolute error (MAE) of the proxy feasibility certificates:

1

imax

imax∑
i=1

|p∗(xi)− γ̌i|;

3. total elapsed computation time of the algorithm.

The results are presented in Figure 4. For optimality gap and certificate MAE we see a very

similar trend as N increases. While the two metrics might seem unrelated at first glance, the

sharpness of the probability guarantees plays an important role in reducing conservativeness and

thus closing the optimality gap.

We find that the computation time increases as N increases. However, the increase is modest

in proportion to the increase in N and can be further reduced via parallelization. We infer from
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Figure 4: Box-and-whisker plots (with “outliers” omitted) displaying three metrics (optimality

gap, certificate MAE and computation time) for ROBIST when applied to a slightly altered

version of Problem (32)-(34) for k = 2. We plot the results as a function of the amount of

available data (N).

this analysis (along with other numerical experiments) that ROBIST is able to produce higher

quality solutions and tighter probability guarantees when provided with more data, without

inordinate increases in computation time.

In the second set of experiments, we analyze the efficiency of Algorithm 1 as the problem

size k increases. Here we evaluate the following metrics:

1. irobust : number of iterations required to find a sufficiently robust solution:

irobust = min{i : p∗(xi) ≥ 1− ϵ};

2. iopt : number of iterations required to obtain an optimality gap of less than 1%:

iopt = min

{
i :

θ∗ − g(xi)

θ∗
< 0.01, γ̌i ≥ 1− ϵ, p∗(xi) ≥ 1− ϵ

}
;

3. |Si|max : maximum size of the scenario sets used to solve SCPi:

|Si|max = max
i
{|Si|}.

We utilize the same setup as before (ϵ = 0.05, α = 0.10 and imax = 1,000), but with a fixed

number of data points (N = 1.5 × 106). The results of these experiments are displayed in

Figure 5.

The most striking finding is that irobust and |Si|max both increase at similar, modest rates as

the problem size increases. For example, while k increases 1000-fold, the maximum size of |Si|
becomes only 4.3 times as large (on average). We observe that 40 iterations is, in most cases,

sufficient for ROBIST to obtain near optimal solutions for this problem setting.

4.2 Linear Problem from Jiang and Xie (2022)

In this section, we compare the performance of ROBIST with methods from the sample average

approximation literature. In this comparison, we consider the Linear CCP proposed by Jiang

20



2 20 200 2000
k

0

10

20

30

40
i ro

bu
st

2 20 200 2000
k

0

10

20

30

40

i op
t

2 20 200 2000
k

0

10

20

30

40

|
i|m

ax

Figure 5: Box-and-whisker plots (with “outliers” omitted) displaying three metrics (irobust, iopt

and |Si|max) regarding the performance of ROBIST when applied to a slightly altered version of

Problem (32)-(34) of varying size (k).

and Xie (2022), which is formulated as:

max
x∈[0,1]k

c⊺x

s.t. P (a⊺x ≤ 100) ≥ 1− ϵ,

(37)

where a is an uncertain parameter uniformly distributed on the integers 1 to 50, and c is a

known vector, pre-generated randomly and uniformly on the integers 1 to 10.

4.2.1 Numerical Results.. We emulate the numerical experiments reported by Jiang and

Xie (2022) and set ϵ = 0.1. Furthermore, we set α = 0.01, imax = 200 and compare the

performance of ROBIST with three alternative methods that can be used to solve the SAA

variant of (37) for a given number of scenarios N . These three methods are: (i) a mixed-

integer reformulation (abbreviated as MIO), (ii) ALSO-X and (iii) ALSO-X+. For the latter

two methods we copy the implementation details proposed in Jiang and Xie (2022), see https://

github.com/jnan97/ALSO-X for the code. To prevent excessive computation times for the MIO

method, we set a time limit equal to the running time of ROBIST for the corresponding instance.

The results are presented in Table 2.

We find that no single method dominates in terms of both objective value and probability of

being feasible. ALSO-X+ is able to achieve the highest objective values. However, its solutions

do not achieve the desired level of robustness (1 − ϵ = 0.9). This is a consequence of the fact

that SAA can overfit the data. Indeed, according to Theorem 10 of Luedtke and Ahmed (2008),

to achieve an (out-of-sample) feasibility guarantee ≥ 0.9 for the problem instance with k = 100

would require N > 106. On the other hand, we find that ALSO-X is the most consistent method

for providing solutions that achieve the desired level of robustness. However, in terms of objec-

tive value, its solutions are generally not as good as the solutions produced by ROBIST. The

MIO approach, when given a time limit equal to ROBIST’s runtime, is not able to effectively

solve instances with N ≥ 10,000. For N = 50,000, simply finding a feasible solution using MIO

takes two orders of magnitude longer than ROBIST. For ROBIST (with imax = 200), we find

that N = 1,000 is not sufficient to achieve the desired level of robustness, due to the high dimen-

sionality k ≥ 100. However, for N ≥ 5,000, ROBIST is able to consistently provide solutions
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Table 2: Comparison between MIO, ALSO-X, ALSO-X+ and ROBIST for solving a random

realization of Problem (37). The column “P(feas.)” shows an empirical estimation of the prob-

ability that a solution is feasible (using 106 additional data points). For MIO, Gurobi is given

a time limit equal to the running time of ROBIST for the instance (the actual runtime of MIO

is longer, as the solver continues until it finds a feasible solution). For ROBIST, the feasibility

certificates are also displayed in the final column “Cert.”

MIO ALSO-X ALSO-X+ ROBIST

k N Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Time (s) Obj. P(feas.) Cert.

100 1000 16.0 33.28 0.892 14.4 32.16 0.941 69.6 34.03 0.864 14.6 32.72 0.879 0.830

5000 40.9 31.32 0.964 75.3 32.06 0.957 400.5 33.71 0.892 16.6 32.24 0.915 0.894

10000 106.6 11.05 1.000 153.0 31.90 0.960 780.7 33.61 0.897 15.7 32.26 0.913 0.892

50000 2006.5 10.29 1.000 952.4 31.84 0.958 4352.0 33.50 0.897 17.4 32.17 0.905 0.898

200 1000 22.4 34.17 0.908 36.3 33.77 0.927 189.6 35.63 0.829 20.2 34.26 0.860 0.820

5000 71.2 32.80 0.967 162.8 33.39 0.954 858.2 34.97 0.887 25.8 33.65 0.914 0.898

10000 190.6 10.33 1.000 298.8 33.43 0.955 1616.6 34.96 0.890 22.9 33.12 0.906 0.891

50000 3590.8 10.29 1.000 1802.4 33.37 0.959 8264.4 34.79 0.898 27.7 33.37 0.908 0.902

300 1000 29.1 34.28 0.932 43.2 34.58 0.913 241.1 36.42 0.815 26.4 35.59 0.819 0.772

5000 82.6 33.77 0.969 223.2 34.37 0.955 1322.4 35.67 0.888 30.3 34.82 0.900 0.873

10000 219.8 10.38 1.000 496.6 34.43 0.953 2756.3 35.76 0.883 29.8 34.59 0.905 0.887

50000 4675.5 10.29 1.000 2732.2 34.35 0.959 14982.2 35.57 0.898 37.5 34.37 0.904 0.900

of adequate robustness within relatively stable computation times. More importantly, from the

results presented in Table 2 we observe that the computation times of these three alternative

methods do not scale as well as ROBIST as the amount of data N increases. Therefore, we

infer that for larger scale problems, where one expects to require large amounts of data in order

to adequately approximate the chance-constraint, ROBIST is more computationally tractable

than these three alternative methods.

4.3 Weighted Distribution Problem

In the next set of experiments, we consider the weighted distribution problem of Carè et al.

(2014). Suppose a company is able to produce and sell n different products with the usage of m

different machines. The goal is to determine an optimal production plan, which specifies the

amount of time xjk that each machine j = 1, . . . ,m will be used for producing product k =

1, . . . , n. An optimal plan is one that maximizes the total profit of the company subject to

availability constraints.

Each machine j may only be used for a limited amount of time aj and incurs operating

costs cjk per unit of product k that is produced. Each unit of product k can be sold at a price

of uk and the leftover units incur holding costs hk. For this problem, there are the following

uncertain parameters: the demand d̃k for each product k and the quantity p̃jk of product k that

is produced per allocated unit of time for machine j. The optimization problem is formulated
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as follows:

max
x

n∑
k=1

uk min


m∑
j=1

pjkxjk, dk

−
m∑
j=1

n∑
k=1

cjkxjk −
n∑

k=1

hk max


m∑
j=1

pjkxjk − dk, 0

 (38)

s.t.
n∑

k=1

xjk ≤ aj , j = 1. . . . ,m, (39)

xjk ≥ 0, j = 1. . . . ,m, k = 1. . . . , n. (40)

We note that this is a difficult problem to deal with using conventional robust optimization

techniques, since (38) is not convex in the uncertain parameter vectors d̃ and p̃.

For this problem, one is interested in obtaining a feasible and profitable production plan x.

However, due to the uncertainty in the demand of the products and the productivity of the

machines, the exact profit can not be computed ahead of time. As in the portfolio manage-

ment problem discussed in Appendix C.2 and the two-stage lot-sizing problem discussed in

Appendix C.3, the uncertain parameters occur only in the objective. Hence, Algorithm 1 is

slightly altered (see Section 3.1 for the details).

For this problem, we are interested in robust solutions for which one can state with confidence

of at least 1−α that, if implemented, the realized profit will be larger than some threshold value

with probability of at least 1−ϵ. In other words, our objective is to maximize this threshold value

(i.e., the Value-at-Risk), which represents a probabilistic lower bound on the realized profit.

4.3.1 Numerical Results.. We emulate the numerical experiments reported by Carè et al.

(2014), where ϵ = 0.01 and α = 10−9. The demand d̃j is drawn from a Dirichlet distribution

and the efficiency parameters p̃jk are assumed to be uniformly distributed around some nominal

values p̄jk with a ±5% maximum deviation. We refer to Carè et al. (2014) for the exact nominal

values associated with the original problem with m = 5 machines and n = 10 products. For the

larger problem instances (where m > 5 and n > 10), the nominal values are slightly perturbed.

We let these nominal values be uniformly distributed within ±10% of the original problem.

We compare the performance of ROBIST with four existing scenario optimization methods

from the literature. These are: C&C (Calafiore and Campi, 2005), FAST (Carè et al., 2014),

RSD (Calafiore, 2017) and ISO (Garatti et al., 2022).

We implement the methods with the following settings. For C&C we utilize Theorem 1

from Campi and Garatti (2008) to determine the number of randomly sampled scenarios NC&C

with which (SCP) is solved. For FAST we follow the suggested rule of thumb to select the

number of scenarios NFAST
1 with which (SCP) is solved (e.g., NFAST

1 = 20mn). For RSD, we

set ϵ′ = 0.7ϵ, determine NRSD by requiring that the asymptotic upper bound on the expected

number of iterations is less than or equal to 10 and then use Equation (18) in Calafiore (2017)

to determine NRSD
o . For ISO we use Algorithm 2 of Garatti et al. (2022) to determine the set

sizes N ISO
0 , N ISO

1 , . . . , N ISO
mn . Finally, for ROBIST we allow access to N = 3,000 data points

and use a maximum of 200 iterations as stopping criteria. The results are reported for a single

instance in Tables 3 and 4.
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In Table 3 we find that, for the largest problem instance (m = 15, n = 30), the 10-hour time

limit was reached for C&C, RSD and ISO. This is due to having to solve (SCP) with large sets

of scenarios S. By design, ROBIST utilizes significantly fewer scenarios when solving (SCP),

which is clearly observed in the results corresponding to |S|max. This key difference enables

ROBIST to remain computationally tractable when applied to the larger problem instances.

Table 3: Comparison between Calafiore and Campi (2005); Carè et al. (2014); Calafiore (2017);

Garatti et al. (2022) and ROBIST in terms of the amount of data used (N), the maximum

number of scenarios with which (SCP) is solved (|S|max) and the required computation time

when applied to Problem (38)-(40) with varying number of machines m and products n. A

dash (-) signifies that the time limit was reached before the relevant metric could be computed.

N |S|max Computation time (s)

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 10580 3062 28662 5678 3000 10580 1000 6017 5678 65 699 10 239 17367 35

10 20 34918 6073 41733 - 3000 34918 4000 26160 - 86 27541 311 12438 > 36000 76

15 30 74468 11073 - - 3000 74468 9000 60586 - 96 > 36000 3130 > 36000 > 36000 130

Next, in Table 4 we inspect the quality of the resulting solutions. We find that the four

methods perform similarly in terms of the out-of-sample 1%-VaR. However, ROBIST, while

having access to relatively few data points, is able to outperform the existing methods in terms

of the objective value. Note that, in many real-world situations there may be a limited amount of

data available and one may not have access to additional out-of-sample data. In such a situation

one can only consult the objective value in order to determine the quality of a solution.

Table 4: Comparison between Calafiore and Campi (2005); Carè et al. (2014); Calafiore (2017);

Garatti et al. (2022) and ROBIST in terms of the objective value and out-of-sample performance

of the resulting solutions when applied to Problem (38)-(40) with a varying number of machines

m and products n. A dash (-) signifies that the time limit was reached before a solution

was found. The out-of-sample results are computed using 106 additional randomly generated

scenarios.

Objective value Out-of-sample 1%-VaR

m n C&C FAST RSD ISO ROBIST C&C FAST RSD ISO ROBIST

5 10 457.8 441.4 464.7 458.7 455.3 473.5 477.3 476.3 471.7 475.0

10 20 973.2 945.5 974.6 - 962.1 1000.0 998.5 997.5 - 996.8

15 30 - 1469.7 - - 1491.7 - 1514.7 - - 1519.1

5 Conclusion

In this paper we propose ROBIST, a versatile, simple, data-driven and effective algorithm for

dealing with optimization problems with uncertain parameters. A key element in ROBIST is

the evaluation procedure, where probability guarantees are derived a posteriori using statistical

testing. This procedure provides sharp probability guarantees that can be computed very effi-

ciently, which allows the algorithm to identify and avoid overly conservative solutions. ROBIST
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can be applied to a wide variety of problem types and offers a number of practical advantages

over existing methods. Furthermore, numerical experiments across a variety of applications show

that ROBIST outperforms many alternative methods in terms of computational tractability as

well as solution quality.

It is important to note that the probabilistic guarantees provided by the evaluation procedure

are based on asymptotics (as N → ∞) and are therefore only approximately valid. As such,

ROBIST performs best when there is a large amount of data available.
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A ϕ-divergence and confidence set

In order to formally evaluate the robustness of solutions, we use statistical testing that is based

on ϕ-divergences. Given two vectors p,q ∈ Rdp , a ϕ-divergence is defined as

Iϕ(q,p) =

dp∑
i=1

piϕ

(
qi
pi

)
,

where ϕ : [0,∞) → R is a convex function satisfying ϕ(1) = 0, ϕ(a/0) := a limt→∞ ϕ(t)/t

for a > 0 and ϕ(0/0) = 0. Using the modified χ2-distance, as we do throughout this paper,

corresponds to choosing ϕ(t) = (t − 1)2. An extensive study of the statistical properties of

ϕ-divergences, as well as an overview of common choices of ϕ(·) functions, are given in Pardo

(2006) and Ben-Tal et al. (2013).

In this paper we utilize the following property. Suppose p∗ is a probability vector and N

data points are used to estimate p∗ with the empirical estimator p̂. Then, Pardo (2006) has

shown that the following statistic:

2N

ϕ′′(1)
Iϕ(p

∗, p̂),

converges (as N →∞) to a chi-squared distribution with dp−1 degrees of freedom. Here, ϕ′′(1)

denotes the second derivative of ϕ evaluated at 1. Hence, one can construct the following (1−α)-
confidence set for the true probability vector p∗, as a ϕ-divergence ball around the empirical

estimate p̂: {
q ∈ Rdp : q ≥ 0, qT1 = 1, Iϕ(q, p̂) ≤

ϕ′′(1)

2N
χ2
dp−1,1−α

}
,

where χ2
dp−1,1−α is the (1− α)-quantile of the chi-squared distribution with degree dp − 1.

B Proofs

B.1 Proof of Lemma 1

By definition, we have that

γi = min
q≥0

{
q : p

(
q

p
− 1

)2

+ (1− p)

(
1− q

1− p
− 1

)2

≤ r

}
,

where r = 1
Nχ2

1,1−α and p is an empirical estimate based on N independent observations. Since

the objective function is linear and the constraints are convex, we can determine the optimal

solution by solving the following quadratic equation:

p

(
q

p
− 1

)2

+ (1− p)

(
1− q

1− p
− 1

)2

= r.

Solving this for q yields the smallest solution q = p −
√
p(1− p)r. Since the constraint q ≥ 0

must also hold, we have that γi = max{p −
√

p(1− p)r, 0}. To show that γi is also increasing
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in p, we first note that the function p 7→ p −
√

p(1− p)r is convex in p, and thus is increasing

after its minimum. Furthermore, we have

p−
√
p(1− p)r ≥ 0⇔ p ≥ r

1 + r
.

Hence, its minimum, which is smaller than zero, can only be attained for p < r
1+r . Therefore,

γi > 0 only if p ≥ r
1+r and thus γi is increasing in p.

B.2 Proof of Lemma 2

Let {S̆0, . . . , S̆M} be all the possible subsets of the training data set Dtrain
N1

= {ẑ1, . . . , ẑN1} with
S̆0 = ∅ and M = 2N1−1. For each subset S̆j ∈ {S̆0, . . . , S̆M}, we denote x̆∗

j as the unique optimal

solution of the corresponding Problem (SCPi), where Si = S̆j . Furthermore, we denote γ̂(x̆∗
j )

as the certificate of x̆∗
j , derived using Dtrain

N1
. Finally, we define the corresponding “infeasibility”

set IFeas(x̆∗
j ) as:

IFeas(x̆∗
j ) := {ẑj ∈ Dtrain

N1
: f(x̆∗

j , ẑ
j) > 0}.

Letting Si denote the subset used during the i-th iteration of Algorithm 1 and following the addi-

tion and removal procedure described in Section 2, we have the following transition probabilities

between the possible subsets {S̆1, . . . , S̆M}:

P(Si+1 = S̆j | Si = S̆k) =



(1− v) · 1
|IFeas(x̆∗

k)|
if γ̂(x̆∗

k) ≤ 1− ϵ and S̆j = S̆k ∪ {ẑ}, ẑ /∈ S̆k,

v · 1
|IFeas(x̆∗

k)|
if γ̂(x̆∗

k) > 1− ϵ and S̆j = S̆k ∪ {ẑ}, ẑ /∈ S̆k,

(1− v) · 1
|S̆k|

if γ̂(x̆∗
k) ≥ 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ ∈ S̆k,

v · 1
|S̆k|

if γ̂(x̆∗
k) < 1− ϵ and S̆j = S̆k \ {ẑ}, ẑ ∈ S̆k,

0 otherwise.

Since the transition probability depends only on the previous subset, we have that Si constitutes
a time-homogeneous Markov chain with finitely many states. This finiteness implies that there

exists at least one particular subset for which the corresponding solution x̆∗ is optimal with

respect to the test data.

We will now show that for all possible subsets/states, there is a path with positive probability

to one of the subsets with the optimal solution. Indeed, for any subset S̆j , there is always a

probability of removal and hence a path to the empty set S̆0, which we denote as S̆j → S̆0.
Let Sopt be the collection of all optimal subsets and let S̆k∗ ∈ Sopt be a particular optimal

subset. We claim that there is a path from S̆0 to the class Sopt:

S̆0 → · · · → Sopt.

Indeed, let x̆∗
0 be the solution of the empty set S̆0. Since maxx∈X {g(x)} ≥ maxx∈X {g(x) :

f(x, ẑj) ≤ 0, ∀ẑj ∈ S̆k∗}, we have that if x̆∗
0 is feasible for all scenarios in S̆k∗ , then x̆∗

0 must also

be the unique optimal solution (uniqueness by assumption or by Remark 2) of solving (SCPi)

with Si = S̆k∗ . In that case, we have by definition that x̆∗
0 is an optimal solution with respect to
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the test data and thus implies S̆0 ∈ Sopt. Therefore, without loss of generality, we may assume

that x̆∗
0 is infeasible for at least one scenario, say ẑq of S̆k∗ . Since there is a positive probability of

adding this scenario, there is a positive probability path S̆0 → S̆0 ∪ {ẑq} and we can now repeat

the same argument above for the solution x̆∗ of S̆0 ∪ {ẑq}: if x̆∗ is feasible for all scenarios in

S̆k∗ , then S̆0 ∪{ẑq} ∈ Sopt. Otherwise, there is a positive probability of adding another scenario

of S̆k∗ . This argument continues until either the subset S̆k∗ is reached, or an optimal subset

is reached earlier in the path. Thus, there is a positive probability path to all subsets in the

Markov chain. Therefore, the Markov chain is time-homogeneous and irreducible, which implies

that the hitting probability of any state is 1 (Norris, 1997, Theorem 5.8).

C Extra numerical experiments

C.1 Altered Toy Problem

Our altered toy problem is formulated as follows:

max
x

e⊺x (41)

s.t. z̃⊺x ≤ 1, (42)

1 +

k−1∑
j=1

xj ≤ xk, (43)

x ≤ k, (44)

where x, z ∈ Rk, and e⊺ = (1, 1, . . . , 1) ∈ Rk. We assume that the uncertain parameter vector z is

stochastic, where the random variables z̃1, . . . , z̃k are assumed to be independently and uniformly

distributed in [−1, 1]. We are interested in obtaining a robust solution to Problem (41)-(44),

i.e., a solution that satisfies Constraint (42) with probability greater than or equal to 1− ϵ.

In the following paragraphs we use Problem (41)-(44) as a benchmark for evaluating certain

components of ROBIST, as presented in Algorithm 1. Recall that for this problem we are able

to analytically derive the true probability that (42) is satisfied:

p∗(x) := P (z̃⊺x ≤ 1) =
1

2
+

1

2xk
. (45)

This enables an analysis of the following three metrics:

1. irobust : number of iterations required to find a sufficiently robust solution:

irobust = min{i : p∗(xi) ≥ 1− ϵ};

2. |Si|max : maximum size of the scenario sets used to solve SCPi:

|Si|max = max
i
{|Si|};

3. optimality gap of the best found sufficiently robust solution:

θ∗ −maxi{g(xi) : γ̌i ≥ 1− ϵ, p∗(xi) ≥ 1− ϵ}
θ∗

.
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C.1.1 Effect of υ.. First, we examine the input parameter υ. Recall that this parameter

controls the probability of reversing the addition or removal action suggested by evaluation on

the training data. As stated earlier, this random component is added to ensure theoretical

convergence of Algorithm 1 and for the other numerical experiments presented in this pape it is

set to 0.01. Here we consider alternative choices for υ, where we vary υ ∈ {0.01, 0.25, 0.5} and
analyze the performance of ROBIST under such a parameter setting. Note that setting υ = 0.5

is equivalent to a strategy where, at each iteration, a scenario is added or removed with equal

probability.

Our setup is as follows: ϵ = 0.05, α = 0.01, imax = 200, where we vary k ∈ {20, 200, 2000}
and N ∈ {3000, 30000}. To control for the effects of randomness, we repeat the experiment 10

times and report the average. The results are presented in Table 5.

Table 5: Analysis of impact of parameter υ on performance of ROBIST when applied to Prob-

lem (41)-(44). Settings: ϵ=0.05, α=0.01 and imax=200. The results are averaged over 10

repetitions.

irobust |Si|max Opt. Gap (%)

υ 0.01 0.25 0.50 0.01 0.25 0.50 0.01 0.25 0.50

k N

20 3000 9.4 6.3 11.7 14.1 13.9 10.3 6.01 6.52 6.97

30000 9.6 12.6 20.8 13.5 13.9 15.9 2.14 2.40 3.74

200 3000 17.2 18.6 56.2 20.7 18.4 16.9 6.26 6.32 16.29

30000 18.5 22.9 50.8 21.4 18.8 17.4 1.77 2.02 3.56

2000 3000 24.0 30.4 118.6 27.2 25.6 16.5 5.43 6.06 25.44

30000 22.9 32.8 117.0 27.9 26.1 20.0 2.11 2.15 12.86

We find that a higher degree of randomization, i.e., υ ∈ {0.25, 0.50} instead of υ = 0.01,

generally performs worse in terms of irobust and the optimality gap. While the performance

of ROBIST with υ = 0.25 is comparable to our default (0.01), the performance is significantly

affected when υ is set to 0.50. Here we find a large difference in terms of the number of iterations

required to find a sufficiently robust solution. Interestingly, a higher degree of randomization

does lead to relatively smaller scenario sets, which could be beneficial in terms of computational

effort. However, this benefit is likely offset by the increased number of iterations required.

Overall, we conclude from these numerical experiments that setting υ ∈ [0, 0.25] is unlikely

to have a significant impact on the performance of Algorithm 1.

C.1.2 Addition strategy.. Given the decision to add or remove a scenario from our sampled

set S, one could think of various ways to select a scenario to add/remove. In this section we

examine the addition strategy of ROBIST.
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Our default strategy, the strategy that is used throughout this paper, is to pick a random

scenario from amongst the scenarios for which our current solution violates the constraint, i.e., at

iteration i, we pick randomly from the set: {ẑj ∈ Dtrain
N1

: f(xi, ẑ
j) > 0}. We abbreviate this

strategy as “RV” (short for random violation). An alternative strategy is to simply select a

random scenario from amongst the scenarios that are not already in our set, i.e., at iteration i,

we pick randomly from the set: {ẑj ∈ Dtrain
N1

Si}. We abbreviate this strategy as “RA” (short for

random any). Another alternative strategy is to simply select a random scenario from amongst

the scenarios for which our current solution is maximally violated, i.e., at iteration i, we pick

a random scenario from the set: {ẑj ∈ Dtrain
N1

: ẑj ∈ argmaxl f(xi, ẑ
l), f(xi, ẑ

j) > 0}. We

abbreviate this strategy as “MV” (short for maximal violation).

We compare these two alternative addition strategies with our default strategy by applying

them to Problem (41)-(44). Our setup is as follows: ϵ = 0.05, α = 0.01, imax = 200, where we

vary k ∈ {20, 200, 2000} and N ∈ {3000, 30000}. To control for the effects of randomness, we

repeat the experiment 10 times and report the average. The results are presented in Table 6.

Table 6: Analysis of impact of the addition strategy on performance of ROBIST when applied

to Problem (41)-(44). Settings: ϵ=0.05, α=0.01, imax=200. The results are averaged over 10

repetitions.

irobust |Si|max Opt. Gap (%)

Strat. RV RA MV RV RA MV RV RA MV

k N

20 3000 9.4 49.3 2.1 14.1 101.5 3.4 6.01 36.15 10.40

30000 9.6 85.9 1.8 13.5 129.3 3.0 2.14 5.55 8.99

200 3000 17.2 108.6 3.9 20.7 145.9 5.8 6.26 35.08 6.70

30000 18.5 102.7 2.2 21.4 128.9 3.7 1.77 5.35 3.51

2000 3000 24.0 120.6 5.6 27.2 157.2 7.3 5.43 53.52 5.44

30000 22.9 138.8 3.6 27.9 158.6 5.2 2.11 32.34 2.40

We find that MV does best in terms of irobust and |Si|max. Intuitively speaking, MV is quicker

to identify critical scenarios and add these to the scenario set. However, this strategy may lead

to overly conservative solutions, which is reflected in the results for the optimality gap, for which

our default strategy (RV) outperforms the two alternatives.

Overall, we conclude from these numerical experiments that RV performs significantly better

than RA and that MV is likely to be an effective strategy for large scale instances with small ϵ.
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C.2 Portfolio Management Problem

In this subsection we apply ROBIST to a portfolio management problem. As in Bertsimas et al.

(2018), we consider an uncertain single period allocation problem:

max
x≥0

z⊺x (46)

s.t. e⊺x = 1. (47)

For this problem one seeks a profit-maximizing allocation x ∈ Rk across k different assets, for

which the returns z ∈ Rk are uncertain.

Note that in this problem the uncertainty only affects the objective. As such, when applying

ROBIST, Algorithm 1 is slightly altered (see Section 3.1 for the details). Rewriting (46)-(47)

using an epigraph reformulation, we obtain the following:

max
x,θ

θ (48)

s.t. z⊺x ≥ θ, (49)

e⊺x = 1, (50)

x ≥ 0. (51)

We note that solving (48)-(51) while providing a probability guarantee for Constraint (49)

is equivalent to maximizing the value at risk (VaR), or (100 × ϵ)%-quantile, of the portfolio’s

profit, as:

P(z̃⊺x ≥ θ) ≥ 1− ϵ ⇐⇒ VaRP
ϵ (z̃

⊺x) ≤ θ. (52)

C.2.1 Numerical Results.. We follow Bertsimas et al. (2018) by utilizing the model from Natara-

jan et al. (2008) to synthetically generate returns for k assets. This is done for a single time

period in the following manner:

zi =


√

(1−γi)γi
γi

with probability γi

−
√

(1−γi)γi
1−γi

with probability 1− γi

, γi =
1

2

(
1 +

i

k + 1

)
, i = 1, . . . , k. (53)

In this model, all assets i = 1, . . . , k have mean return 0%, standard deviation 1%, but have

different skew and support. The higher indexed assets have a larger γi and are more negatively

skewed and thus more likely to generate large losses and small upside gains. The returns for the

assets are assumed to be independent.

We evaluate the performance of ROBIST with imax = 200 by comparing it to the results

reported in Table 3 in Bertsimas et al. (2018) (where k = 10 and α = ϵ = 0.1). In Table 7 we

report the average out-of-sample 10%-VaR over 100 repetitions.
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Table 7: Average 10%-VaR on out-of-sample realized returns, computed using 106 additional

randomly generated scenarios. ROBIST is compared with the methods presented in Table 3 of

Bertsimas et al. (2018).

N M LCX CS CM ROBIST

500 -1.095 -0.411 -0.397 -0.539 0.194

2000 -1.095 -0.411 -0.396 -0.451 0.316

We find that ROBIST significantly outperforms the other solution methods of Shawe-Taylor

and Cristianini (2003); Calafiore (2013) and Bertsimas et al. (2018) in regard to average out-

of-sample performance. The large difference in performance is explained by the difference in

portfolio holdings, which is displayed in Figure 6. Here we find that the solutions found by

ROBIST put all wealth in either asset 9 or 10.

Figure 6: Graphical display of the average, along with 10% and 90% quantiles, of the portfolio

holdings by method across the 100 repetitions of the experiment with N = 500. On the left

we show the portfolio holdings reported in Figure 4 of Bertsimas et al. (2018), on the right we

display the same information for the portfolio holdings found by applying ROBIST.

Upon further inspection of the data generation procedure of Natarajan et al. (2008) for

k = 10, one finds that γ9 = 0.909 and γ10 = 0.955. This implies that:

r̃9 =

 0.32 with probability 0.909

−3.16 with probability 1− 0.909
r̃10 =

 0.22 with probability 0.955

−4.58 with probability 1− 0.955.

Thus, when x9 = 1 the 10%-VaR is = 0.32, and when x10 = 1, the 10%-VaR is 0.22.

While the allocations obtained via ROBIST are somewhat trivial and arguably risky, they

do outperform the allocations found by the other methods in terms of the objective under

consideration (10%-VaR). Our solutions exploit a flaw in optimizing for VaR when using the

generation procedure of Natarajan et al. (2008) with k = 10 assets and ϵ = 10%. This flaw was

not discovered by the other methods, which is due to their more conservative approach.

This flaw highlights a well-known danger in optimizing for VaR, namely that it does not

account for the magnitude of losses that occur with probability less than ϵ. Alternatively one

may consider optimizing the conditional VaR instead; see Basak and Shapiro (2001) and Laeven

and Stadje (2014). We note that this is also possible with ROBIST (see Section 3.3).
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C.3 Two-Stage Lot-Sizing Problem

In the final set of experiments, we evaluate the performance of ROBIST on a two-stage adaptive

lot-sizing problem. A similar variant of this problem is studied in Bertsimas and de Ruiter

(2016).

Consider a network of m nodes, where each node i ∈ {1, . . . ,m} has uncertain demand d̃i.

The demand at each node in the network must be satisfied and this can be done through the

initial allocation of stock xi, or by moving yji units of stock from node j to node i. The initial

allocation of stock at node i costs ci per unit, while the unit transportation costs are uncertain

and denoted by t̃ij . Each node has a maximum allocation capacity of ki units.

We model this as a two-stage adaptive problem where the initial allocation decisions x must

be made before the uncertainty is realized. In the second stage, the transportation decisions yij

can adapt to the realized demand and transportation costs. For notational ease, we denote

uncertain parameters d̃i and t̃ij as a single vector z̃ ∈ Rm+m2
and formulate the problem as:

min
x,θ

θ (54)

s.t.

m∑
i=1

cixi + V (z,x) ≤ θ, (55)

0 ≤ xi ≤ ki, i = 1. . . . ,m, (56)

where:

V (z,x) := min
y≥0

m∑
i=1

m∑
j=1

tijyij (57)

s.t. xi +

n∑
j=1

yji −
n∑

j=1

yij ≥ di, i = 1, . . . ,m. (58)

If Constraint (58) is not satisfied, V (z,x) =∞. For this problem, we are interested in solutions

for which we can provide statistical guarantees of the form (5), with γ ≥ 1−ϵ, for Constraint (55).
Finally, note that most techniques from RO, such as the method presented in Bertsimas

and de Ruiter (2016), are unable to deal with adaptive problems with “random recourse” (i.e.,

when the adaptive decisions are multiplied with uncertain parameters). As tij is uncertain, the

majority of existing RO methods can not be applied to this problem.

C.3.1 Numerical Results.. We replicate the parameter settings utilized by Bertsimas and

de Ruiter (2016). However, instead of using an uncertainty set, we sample d̃i and t̃ij in the

following manner:

1. Realizations of d̃i are uniformly sampled from the budgeted uncertainty set described in

Bertsimas and de Ruiter (2016) via the hit-and-run sampling method of Smith (1984).

2. Let the Euclidean distance from i to j be vij . We generate realizations of t̃ij by uniformly

sampling in the range [0.9vij , 1.1vij ].
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In this set of experiments, we compare ROBIST with the solution approach of Vayanos et al.

(2012) (hereafter abbreviated as VKR). The idea behind this approach is to approximate the

adaptive decisions using “decision rules” (finite linear combinations of the uncertain parameters).

This allows one to reduce a multistage adaptive problem to a single stage static problem. Then,

one can apply the theory from Campi and Garatti (2008) to determine the necessary number of

randomly sampled constraints in order to obtain solutions that satisfy the desired probability

guarantee.

In our numerical experiments, we implement VKR using polynomial decision rules of de-

gree p, where p ∈ {1, 2}. For such decision rules the adaptive decisions y are substituted by

linear combinations of a basis vector b(z̃) ∈ Rsp , where sp =
(
m+m2+p

p

)
(we refer to Vayanos et al.

(2012) for further details). Thus, y = Ab(z̃), where A ∈ R(m×m)×sp contains the coefficients of

the linear combinations, which are treated as decision variables. This reduces Problem (54)-(58)

to the following single-stage form:

min
x,A,θ

θ (59)

s.t.
m∑
i=1

cixi +
m∑
i=1

m∑
j=1

tijyij ≤ θ, (60)

xi +

n∑
j=1

yji −
n∑

j=1

yij ≥ di, i = 1, . . . ,m, (61)

y = Ab(z), (62)

y ≥ 0, (63)

0 ≤ xi ≤ ki, i = 1. . . . ,m. (64)

Problem (59)-(64) can then be solved with respect to some set of randomly sampled scenarios

(let this set be denoted as SV KR), where constraints (60)-(63) are duplicated for each scenario

z ∈ SV KR. The number of randomly sampled scenarios |SV KR| is determined using Theorem 1

of Campi and Garatti (2008), which depends on ϵ, α and the number of decision variables

(1 +m+m2sp).

The ROBIST algorithm is slightly modified when applied to adaptive optimization problems

(see Section 3.2 for the details). An important aspect to note is that, at each iteration i, a new

solution is generated by solving a problem in the form of (21)-(24), which involves 1+m+m2|Si|
decision variables instead of the original 1+m+m2 variables used in defining Problem (54)-(58).

In these experiments we set N = 809 (the minimum number of scenarios utilized by VKR) and

imax = 50.

Setting ϵ = α = 0.05, we compare the two approaches to Problem (54)-(58) as the number

of nodes (m) increases. The numerical results (average over 10 replications) are presented in

Tables 8 and 9.

In Table 8 we find that VKR is faster than ROBIST for the small problem instances (m ≤
3). However, the required amount of randomly sampled scenarios (|SV KR|) and the resulting

computation time rapidly increase as m increases. In comparison, we again find that ROBIST

is effectively able to sample fewer scenarios (see maxi |Si|), retaining computational tractability
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as the problem size increases.

Table 8: Comparison between two implementations of Vayanos et al. (2012) (where p = 1 or

p = 2) and ROBIST in terms of the amount of data used (|SV KR| and N), the maximum number

of scenarios with which (SCP) is solved (|SV KR| and maxi |Si|) and the required computation

time when applied to Problem (54)-(58) with a varying number of nodes m.

|SV KR| ROBIST Computation time (s)

m p = 1 p = 2 N maxi |Si| VKRp=1 VKRp=2 ROBIST

2 809 2655 809 9.0 5 60 196

3 2783 26103 809 10.7 56 > 3600 204

4 10853 117162 809 15.1 2214 > 3600 214

5 24774 392584 809 14.3 > 3600 > 3600 237

In Table 9, we inspect the quality of the resulting solutions for the cases that a solution was

obtained within the one hour time limit. In all tests the initial allocation was sufficient to satisfy

the total realized demand, thus the average 5%-VaR of the out-of-sample realized costs provides

a fair metric of comparison between the methods. Across all the conducted experiments we find

that the solutions obtained via VKR are outperformed by the solutions obtained via ROBIST.

Table 9: Comparison between two implementations of Vayanos et al. (2012) (where p = 1 or

p = 2) and ROBIST in terms of the objective value and out-of-sample performance when applied

to Problem (54)-(58) with a varying number of nodes m. A dash (-) signifies that the time limit

was reached before a solution was found. The out-of-sample results are computed using 104

additional randomly generated scenarios.

Objective value Out-of-sample 5%-VaR

m VKRp=1 VKRp=2 ROBIST VKRp=1 VKRp=2 ROBIST

2 795 792 736 788 778 731

3 1192 - 1041 1178 - 1021

4 1588 - 1229 1555 - 1206

5 - - 1386 - - 1348
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